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Abstract

Grouped data in the form of income shares have conventionally been used to es-

timate income inequality due to the lack of individual records. We provide guidance

on the choice between parametric and nonparametric methods and its estimation, for

which we develop the GB2group R package. We present a systematic evaluation of the

performance of parametric distributions to estimate economic inequality. The accu-

racy of these estimates is compared with those obtained by nonparametric techniques

in more than 5000 datasets. Our results indicate that even the simplest parametric

models provide reliable estimates of inequality measures. The nonparametric approach,

however, fails to represent income distributions accurately.

JEL Classification: D31, C13, C18

1 Introduction

The analysis of income distribution has a venerable history in economics. Its evolution has

been considered essential in explaining not only the causes but also the potential conse-

quences of inequality and poverty. The role of changes in income distribution on different

socio-economic aspects, such as growth, consumption and human capital formation, is widely

documented in the literature (see e.g Barro, 2000; Krueger et al. 2006). Much empirical

research has also been directed at examining geographical differences in inequality and their
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evolution over time, considering family structure, medical progress and technological change,

to mention a few, as potential determinants of these two phenomena (Deaton, 2013; McLana-

han and Percheski, 2008).

Income inequality would be relatively simple to estimate if individual records on personal

or household income data were available. Unfortunately, much of the existing scholarship

on economic inequality has been plagued by a lack of individual data. Nevertheless, the

periodic release of certain summary statistics on the distribution of income has become

relatively common. The World Bank’s PovcalNet, the World Income Inequality Database

(WIID) and the World Wealth and Income Database (WID) are the largest cross-country

databases that provide grouped income/consumption data, typically including information

on income and population shares. This type of grouped data depicts sparse points of the

Lorenz curve, which makes defining a method to link those points an essential requisite for

estimating inequality measures.

Much of the academic literature on the estimation of income inequality from grouped data

deploys nonparametric techniques to approximate the shape of the Lorenz curve. Linear

interpolation of income shares is the most common approach for constructing the so-called

empirical Lorenz curve, from which inequality measures are obtained. With very few ex-

ceptions, the extant scholarship on the global distribution of income presents inequality

trends based on this method (Bourguignon and Morrison 2002; Lakner and Milanovic, 2016;

Niño-Zarazua et al., 2017). The popularity of this methodology is explained not only by its

simplicity but also because it is argued that there is no need to impose any particular model

to fit the empirical data. However this approach rests, albeit not explicitly, on a predefined

distributional model. Indeed, it assumes that all individuals within a particular quantile

have the same level of income, which is obviously not an accurate representation of the in-

come distribution. As a result, relative inequality measures estimated with this method are

lower bound approximations and the actual level of inequality is therefore underestimated

(see, e.g., Kakwani, 1980).

Hence, to obtain reliable estimates of inequality measures, it is necessary to deploy a model

which defines more plausible assumptions on the income distribution within income shares.

Due to its flexibility, some authors have opted for kernel estimation, which avoids imposing

a particular functional form on the distribution of income (Sala-i-Martin, 2006, Hong et al.,

2019). However, the performance of this approach seems to be extremely sensitive to the

bandwidth parameter, which might lead to significant biases in the estimates of poverty and

inequality measures (Minoiu and Reddy, 2014).

Parametric models seem to be a suitable alternative to nonparametric techniques for esti-

mating income distributions (Dhongde and Minoiu, 2013). Yet, this approach has hardly

ever been used to estimate income inequality. The reason seems to be the need to make

ex-ante assumptions on the shape of the distribution. If the choice is not a valid candidate
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for representing the distribution of income, the estimates on inequality measures might be

severely affected by misspecification bias. Despite this potential limitation, prior research

suggests that the parametric approach outperforms other nonparametric techniques for es-

timating poverty indicators from grouped data (Dhongde and Minoiu, 2013; Bresson, 2009).

However, systematic empirical research on the effectiveness of parametric models in estimat-

ing inequality measures is surprisingly scarce. Previous studies point towards an excellent

performance of parametric models (Cowell and Metha, 1982; Shorrocks and Wan 2008), but

these evaluations rely on single case studies and a limited range of distributions, so their

findings should be treated with great caution.

Therefore, robust empirical evidence on the reliability of parametric and nonparametric

estimates would cast valuable light on the relative merits of these approaches for estimating

income inequality from grouped data. This paper explores the implications of using different

econometric strategies for 5570 datasets, which cover more than 180 countries over the period

1867-2015. Out of the whole range of parametric distributions, we direct our attention at

the generalised beta distribution of the second kind (GB2) and its particular and limit cases.

Several distributions from this family have been used to estimate income distribution from

grouped data (Chotikapanich et al., 2007; Jorda et al., 2014; Pinkovskiy and Sala-i-Martin,

2014) because it is acknowledged to provide an excellent fit to income data across different

periods and countries (Feng et al., 2006, Hajargasht et al., 2012).

Our results show that the nonparametric approach performs very poorly in estimating income

inequality. The GB2 distribution is confirmed as the best candidate for estimating income

distributions, although the special cases in this family also lead to accurate estimates, which

are more reliable than nonparametric estimates in virtually all cases. Even for bimodal

income distributions, which are clearly misrepresented by the GB2 distribution, we find no

evidence to support the preference for the lower bound approximation of inequality measures

and kernel density estimates over parametric estimates.

This analysis therefore confirms that a common failing in much of the research on global

inequality is a tendency to avoid using parametric functional forms. Most of those studies

that do consider parametric models rely on simple two- or three-parameter distributions.

Jorda and Nino-Zarazúa (2016) is the only study that uses the GB2 distribution for esti-

mating the global distribution of income. Country-specific applications are more common,

but still scarce (see Burkhauser et al., 2012; Jenkins et al., 2011; Feng et al. 2006). The

lack of interest in this distribution may, we believe, be largely attributed to the fact that the

efficient estimation of this model is far from straightforward. Seeking to incentivise the use of

the GB2 distribution, our estimation procedure implemented in R is conveniently available

in the GB2group package.

In the next section, we introduce the notation and describe how the grouped data have been

generated. We then outline the GB2 distribution and its related models. The following
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section discusses the estimation strategy based on minimum distance estimators in a context

of limited information. Thereafter, we compare the survey Gini index with both the so-

called lower bound of inequality and the estimates based on parametric functional forms.

We also present some results for model competition between different functional forms of

the GB2 family to assess their performance to estimate the Gini coefficient. We make use

of individual records to examine the robustness of the results to inequality measures which

are more sensitive to the lower part of the distribution. Monte Carlo simulation is used to

compare the performance of the parametric approach and the lower bound approximations

in estimating inequality levels of bimodal income distributions. The paper concludes by

considering the practical implications of the study.

2 Estimating income inequality from grouped data

To define the estimation strategy, it is crucial to understand how the grouped data are

generated. Let x be an i.i.d. random sample of size N from a continuous income distribution

f(x;θ) defined over the support H = [0,∞), where θ ∈ Θ ⊆ Rk, with Θ being the parameter

space. Assume that H is divided into J mutually exclusive intervals Hj = [hj−1, hj), j =

1, . . . , J . Denote cj =
∑N

i=1 1[hj−1,hj)(xi)xi/
∑N

i=1 xi, j = 1, . . . , J as the proportion of total

income held by individuals in the jth interval and the cumulative proportion by sj =
∑j

k=1 ck.

Let pj =
∑N

i=1 1[hj−1,hj)(xi)/N, j = 1, . . . , J denote the frequency of the sample x in the jth

interval and uj =
∑j

k=1 pk the cumulative frequency. According to this scheme, income

shares (sj, j = 1, . . . , J) are ordinates of the Lorenz curve corresponding to the abscissae

uj, j = 1, . . . , J .

Five or ten points of the Lorenz curve are publicly available for a large sample of countries.

The Lorenz curve reports the proportion of income accruing to each cumulative share of the

population, once incomes are arranged in increasing order. This curve is scale independent,

so changes in the unit of measurement of the income variable, for instance, from dollars

to thousand of dollars, have no impact on the shape of the curve. Minimum inequality is

observed when sj = uj, j = 1, . . . , J , so the Lorenz curve corresponds to the diagonal from

the origin to the point (1, 1), which is known as the egalitarian line. The Lorenz curve is a

powerful tool for comparing and ordering distributions according to their inequality levels.

If the Lorenz curve of one distribution lies nowhere below and somewhere above the curve

of another distribution, the first distribution can be declared to be less unequal than the

second (Marshall and Olkin, 1979).

To construct the Lorenz curve with the available information on income shares, a method

must be defined for linking the pairs of points (uj, sj), j = 1, . . . , J . An intuitive approx-

imation would be to interpolate the observed income shares linearly. A major drawback

4



of using linear interpolation is that these comparisons would be somewhat crude in that

all individuals classified in a given population group are assumed to have the same income.

Moreover, the Lorenz ordering is partial in the sense that not all distributions can be ranked.

To provide a complete ordering of distributions, we need to rely on inequality measures. The

Gini index is the main indicator used to measure income inequality mainly due to its intu-

itive interpretation in terms of the area between the Lorenz curve and the egalitarian line.

The nonparametric estimation of the Gini index is defined as twice the area between the

egalitarian line and the Lorenz curve obtained by linear interpolation:

G(sj, uj) ≈ 1−
J∑
j=1

(sj + sj−1)(uj − uj−1). (1)

The main limitation of computing the Gini index with the above formula is that it yields

biased estimates of inequality because its construction is based on the assumption that

all individuals in a given population group get the same income. Hence, this formula is

interpreted as the lower bound of the Gini coefficient, which neglects the variation within

income shares (Cowell, 2011).

This kind of analysis might yield biased estimates on inequality, but it is still expected

to provide valuable information. Indeed, the lower-bound approximation is deemed to be

useful because if an upward trend is observed, it could be assured that the actual level of

inequality would also rise. Moreover, with optimal grouping, the bias is expected to be

relatively small for observations with more than five data points (Davies and Shorrocks,

1989).1 Nevertheless, the empirical evidence based on this methodology is problematic in

several ways. Firstly, the groups are often not optimally selected and, more importantly,

the result above is obtained for the particular distribution of Canada. This finding might

not necessarily match the distributional dynamics of other countries, so the bias may be

considerably higher than expected. Secondly, since the size of the bias might vary over time,

it is not possible to obtain conclusions about the overall evolution of income inequality, even

in those cases that exhibit an ascending trend. This is illustrated in Figure 1, which shows

the trend in the survey Gini coefficient in Luxembourg and the Philippines along with the

lower bound of this measure, computed using Eq. (1). In the Philippines, the lower bound of

the Gini index points to an increase in income inequality from 1991 to 1994, but the survey

Gini index shows a downward trend during the same period. In Luxembourg, the survey

Gini index rises one point from 2000 to 2001. The lower bound, however, falls from 0.256 to

0.253.

1 Davies and Shorrocks (1989) develop an algorithm that maximises the value of the inequality index of

interest to arrange the groups, which is equivalent to minimising the loss of distributional information

due to grouping.

5



Figure 1: Estimates of the Gini coefficient using different estimation techniques in Luxem-
bourg and the Philippines
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Note:

Black lines depict the evolution of the survey Gini index, red lines correspond to the evolution of lower
bound of the Gini index .

Parametric models are a sound statistical method for estimating inequality from grouped

data. The use of a parametric model seeks to define a more reliable approximation of the

shape of the Lorenz curve between the observed income shares than a rough linear interpo-

lation. However, it is key to chose a functional form that models the income distribution

accurately. Out of the whole range of alternatives, the GB2 family of distributions seems to

be the most appealing option.2

2.1 The generalised functions for the size distribution of income

The generalised functions for the size distribution of income proposed by McDonald (1984)

include three well-known parametric models: the generalised beta of the first and the second

kind (GB1 and GB2 respectively) and the generalised gamma (GG). Among them, the GB2

distribution seems to be particularly suitable for modelling income distributions. It is a

general class of distributions that is acknowledged to provide an accurate fit to income data

(Jenkins, 2009; McDonald and Xu, 1995; McDonald and Mantrala,1995). The GB2 can be

defined in terms of the probability density function (pdf) as follows:

f(x; a, b, p, q) =
axap−1

bapB(p, q)[1 + (x/b)a]p+q
, x > 0,

where a, b, p, q > 0 and B(p, q) =
∫ 1

0
tp−1(1− t)q−1 dt is the beta function.

2 For a comprehensive review on this topic, readers are referred to Kleiber and Kotz (2003).
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Let Z be the class of all non-negative random variables with positive and finite expectation.

For a random variable X ∈ Z with cumulative distribution function (cdf) F (x;θ), define

F−1X (y) = inf {x;FX(x) ≥ y}. The Lorenz curve associated with X is defined as (Gastwirth,

1971)

LX(u) =

∫ u
0
F−1X (y) dy∫ 1

0
F−1x (y) dy

, 0 ≤ u ≤ 1. (2)

Following Sarabia and Jordá (2014), the Lorenz curve in Eq. (2) can also be expressed as,

L(u) = FX(1)
(F−1X (u)), 0 ≤ u ≤ 1, (3)

where F−1Y (u) denotes the quantile function and FX(1)
(x) = (1/E(X))

∫ x
0
tf(t) dt is the dis-

tribution of the first incomplete moment. To obtain the Lorenz, there is thus a need for

closed expressions for the cumulative distribution function and the distribution of the first

incomplete moment. These functions along with the kth moment and the Gini index are

presented in Table 1.

Following Chotikapanich et al. (2018) and Arnold and Sarabia (2018), the Lorenz curve of

the GB2 distribution is given by,

LGB2(u; a, p, q) = B

(
B−1(u; p, q); p+

1

a
, q − 1

a

)
, 0 ≤ u ≤ 1,

where q > 1/a and B−1(x; p, q) is the inverse of the incomplete beta function ratio.

This model nests most of the functional forms used to model income distributions including

the beta of the second kind (beta 2) when a = 1, used by Chotikapanich et al. (2012)

to estimate the global distribution of income; the Singh-Maddala (2008) (p = 1) and the

Dagum (1977) (q = 1) distributions, used by Hajargasht et al., (2012) and Bresson (2009).

The Lorenz curves of these distributions can be obtained using Eq. (3). The Lorenz curve

of the second kind beta distribution can be expressed as follows:

LB2(u; p, q) = B
(
B−1(u; p, q); p+ 1, q − 1

)
, 0 ≤ u ≤ 1, q > 1. (4)
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Table 1: Cumulative distribution function, kth moment distribution, kth moment and Gini index for a selection of distributions of
the GB2 family

Distribution CDF kth moment distribution E(Xk) Gini Index

GB2 B

(
(x/b)a

1 + (x/b)a
; p, q

)
GB2

(
a, p+

k

a
, q − k

a

)
bkB(p+ k

a , q −
k
a)

B(p, q)
, q > k/a see Eq. (7)

Beta 2 B

(
x/b

1 + x/b
; p, q

)
B2(p+ k, q − k)

bkB(p+ k, q − k)

B(p, q)
, q > k

2B(2p, 2q − 1)

pB2(p, q)
, q > 1.

Singh-Maddala 1−
(

1 +
(x
b

)a)−q
GB2

(
a, 1 +

k

a
, q − k

a

)
bkΓ(1 + k

a)Γ(q − k
a)

Γ(q)
, q > k/a 1−

Γ(q)Γ(2q − 1
a)

Γ(q − 1
a)Γ(2q)

, q > 1/a.

Dagum

(
1 +

(x
b

)−a)−p
GB2

(
a, p+

k

a
, 1− k

a

)
bkΓ(p+ k

a)Γ(1− k
a)

Γ(p)
, k/a < 1

Γ(p)Γ(2p+ 1
a)

Γ(2p)Γ(p+ 1
a)
− 1, a > 1.

Lognormal Φ

(
log x− µ

σ

)
LN(µ+ kσ2, σ) exp

(
kµ+ k2σ2/2

)
2Φ

(
σ√
2

)
− 1.

Fisk 1−
(

1 +
(x
b

)a)−1
GB2

(
a, 1 +

k

a
, 1− k

a

)
, k/a < 1 bkΓ(1 + k)Γ(1− k), k < 1

1

a
, a > 1.

Source: Arnold and Sarabia (2018), Kleiber and Kotz (2003) and McDonald (1984).
Note: B(v; p, q) =

∫ v
0 t

p−1(1 − t)q−1 dt/B(p, q) denotes the incomplete beta function ratio. The existence of kth moment distribution,
defined as F(k)(x) = (

∫ x
o t

k dF (t))/(
∫∞
0 tk dF (t)), x > 0, requires the same constraints on the parameters as the kth moment and

E(Xk) <∞.
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For the Singh-Maddala distribution, the Lorenz curve is given by the following equation:

LSM(u; a, q) = B

(
1− (1− u)1/q; 1 +

1

a
, q − 1

a

)
, 0 ≤ u ≤ 1, q > 1/a, (5)

and for the Dagum distribution it can be written as:

LD(u; a, p) = B

(
u1/p; p+

1

a
, 1− 1

a

)
, 0 ≤ u ≤ 1, a > 1. (6)

We also consider in this study two-parameter distributions, including the Fisk (1961), which

is a particular case of the GB2 making p = q = 1; and the lognormal distribution as a limit

case of the GB2 distribution, which is one of the most popular candidates for modelling

income variables (see e.g. Bresson 2009; Jorda et al., 2014).

Eq. (3) is used to obtain the Lorenz curve of the lognormal distribution as:

LLN(u;σ) = Φ(Φ−1(u)− σ), 0 ≤ u ≤ 1,

where Φ(·) represents the cdf of the standard normal distribution and σ > 0.

For the Fisk distribution, the Lorenz curve is given by

LF (u; a) = B

(
u; 1 +

1

a
, 1− 1

a

)
, 0 ≤ u ≤ 1, a > 1.

Closed expressions of the Gini index for some special cases of the GB2 family are summarised

in Table 1. For the GB2 distribution, the Gini coefficient is given by (McDonald, 1984),

GGB2 =
B(2q − 1/a, 2p+ 1/a)

B(p, q)B(p+ 1/a, q − 1/a)

(
1

p
J (1) − 1

p+ 1/a
J (2)

)
, (7)

where

J (1) = 3F2

(
1, p+ q, 2p+

1

a
; p+ 1, 2(p+ q); 1

)
,

J (2) = 3F2

(
1, p+ q, 2p+

1

a
; p+

1

a
+ 1, 2(p+ q); 1

)
,

if q > 1/a, where 3F2(a1, a2, a2; b1, b2;x) is a special case of the generalised hypergeometric

function defined by

pFq(a1, . . . , ap; b1, . . . , bq;x) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!
,
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where (a)k represents the Pochhammer symbol defined by (a)k = a(a+ 1) · · · (a+ k − 1).

2.2 Estimation methods

Before going any further, it is key to consider how the groupings are generated. Hajar-

gasht and Griffiths (2016) recognise two different data generating process (DGP) that yield

different methods for grouping observations. In the first process, the proportion of observa-

tions in each group is specified before sampling, so that the population proportions (pj) are

fixed, whereas income shares (sj) are random variables. The second type of DGP assumes

pre-specified group boundaries (hj) and, hence, generates random population proportions in

each interval. We focus on the first type of DGP because it fits the structure of the largest

datasets of grouped data, including the WIID and PovcalNet.

The estimation of parametric distributions from grouped data by maximum-likelihood using

a multinomial likelihood function (see McDonald, 1984) would be misspecified under this

type of DGP because of the non-stochastic nature of the group frequencies. Moreover, this

estimation strategy requires information on the limits of the income groups (hj), which is

often unavailable. Due to this data limitation, non-linear least squares have been convention-

ally used to estimate the vector of parameters of interest, minimising the distance between

income shares and the functional form of the Lorenz curve under the parametric assumptions

made on the distribution of income. In this context, non-linear least squares can be referred

the as equally weighted minimum distance (EWMD) estimator. Let X be a random variable

in Z, with cdf F (x;θ),θ ∈ Θ and Lorenz curve L(u;θ). The estimation problem can be

expressed as

θ̂ = argmin
θ

M (θ)′M(θ), (8)

where M (θ)′ = [m1(θ), . . . ,mJ−1(θ)] is the vector of moment conditions, which takes the

form

M (θ) = L(u;θ)− s, (9)

where s′ = (s1, . . . , sJ−1) is a vector of cumulative income shares associated with the popu-

lation proportions u′ = (u1, . . . , uJ−1).

As discussed above, the Lorenz curve is scale independent, so using Eq. (8), it is only possible

to estimate the subset of θ corresponding to the shape parameters.3 The fact that only

3 Hajargasht and Griffiths (2016) propose using the generalised Lorenz curve to define the moment con-

ditions. The generalised Lorenz curve is the result of upscaling the ordinates of the Lorenz curve by

mean income. With their approach, both scale and shape parameters can be estimated because the

mean introduces scale into the model.
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estimates on shape parameters can be obtained with this estimation procedure should not

be interpreted as a limitation. Scale parameters are not needed to estimate relative inequality

measures consistent with the Lorenz ordering, such as the Gini index or the Atkinson index.

Therefore, if the interest lies in measuring relative inequality, this estimation strategy avoids

the need to collect information on mean income. An additional advantage of this estimation

strategy compared to the methods proposed in previous studies (see Hajargasht et al., 2012)

is that the income limits of the groups (hj) are not estimated. Thus the dimensionality of the

optimisation function is substantially reduced, which makes numerical optimisation simpler,

especially when the number of moments is large (Chen, 2018).

EWMD, however, overlooks the fact that the sum of the income shares is, by definition, equal

to one, which introduces dependence between the income shares used in Eq. (8). EWMD

thus yields inefficient although still consistent estimates of θ and hence of the functions that

depend on this set of parameters, including relative inequality measures. To gain efficiency,

we also deploy the optimal minimum distance (OMD) estimator of the following form:

θ̂ = argmin
θ

M(θ)′Ω−1M(θ), (10)

It should be noted that Eqs. (8) and (10) are equivalent if Ω = IJ−1. However, the identity

matrix is not the optimal choice for Ω, which is why EWMD yields generally inefficient esti-

mates. The optimal choice of the weighting matrix Ω is the variance and covariance matrix

of the moment conditions. Results from Beach and Davison (1983) and Hajargasht and Grif-

fiths (2016) characterise the asymptotic distribution of
√
N(L(u;θ) − s) as a multivariate

normal distribution with zero mean and variance and covariance matrix of the form:

Ω = ΨWΨ′, (11)

where

Ψ =


1/µ . . . 0 −s1/µ

...
. . .

...
...

0 . . . 1/µ −sJ−1/µ

 ,
with µ =

∫∞
0
xf(x) dx.W is a symmetric matrix whose elements are

{W }i,j = µ
(2)
i + (uihi − µsi)(hj − ujhj + µsj)− hiµsi, for i ≤ j

with

µ
(2)
i =

∫ hi

0

x2f(x) dx.

Because we only have access to grouped data on income shares, it is not possible to compute
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the variance and covariance matrix of the moment conditions. In order to obtain an efficient

estimator of θ from (10), we consider a two-step OMD estimator that uses the consistent

estimates from EWMD (Eq. (8)) to compute a first stage estimate of Ω, which is used in

the second stage to estimate Eq. (10).

The estimation of Eq. (8) involves the definition of starting values for the optimisation

algorithm.4 For the two-parameter distributions, which only have one shape parameter, we

propose to solve the following equation to obtain an initial value of θ:

g = G(θ),

where g is the sample Gini index, usually reported in the largest datasets of grouped income

data, and G(θ) is the expression of the Gini index of the two-parameter distribution under

consideration (see Table 1).

The distributions Singh-Maddala, beta 2 and Dagum are characterised by two shape pa-

rameters, which complicates the definition of non-arbitrary initial values. Conventionally,

the estimates of a restricted model are taken as initial values. A potential limitation of

this method is that as the dimensionality of the parameter space increases it becomes more

difficult to achieve global convergence. Although it seems quite intuitive that the moment

estimates of a restricted model might be a good starting point, the optimisation of the non-

linear function in (8) could converge to a local minimum, which might lead to inaccurate

estimates of the parameters and, hence, of inequality measures. The approach presented

above for the two-parameter distributions is not feasible for these models in most cases be-

cause no information other than the Gini index and the income shares is reported. To provide

several non-arbitrary combinations of starting values, we propose the following procedure:

1. Rewrite Eq. (8) using the Lorenz curve of the model to be estimated L(u; θ1, θ2),

which is given in Eq. (4) for the B2 distribution, in Eq. (5) for the Singh-Maddala

distribution and in Eq. (6) for the Dagum distribution.

2. Define a grid of integer numbers for the starting values of θ1, θ
(s)
1 ∈ [1, 20].

3. Solve g = G(θ
(s)
1 , θ2) for θ2, to obtain θ

(s)
2 .

4. Estimate the Eq. (8) using (θ
(s)
1 , θ

(s)
2 ), as initial values.

5. Keep the parameter estimates with the lowest residual sum of squares (RSS).

The routine described above enables us to obtain moment estimates of one of the parameters

assuming that the other is equal to the grid value. These 20 combinations of initial values

are used to undertake 20 different regressions using Eq. (8). Although we cannot ensure that

4 We use the optim package in R to find the minimum of Eq. (8). The BFGS algorithm is implemented by

default and L-BFGS is used when this method reports an error. The gradient is computed numerically.
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our estimates belong to the global minima our proposed procedure covers a larger proportion

of the parametric space than just using the moment estimates of a particular sub-model.

For the GB2 distribution, which has three shape parameters and one scale parameter, the

estimates obtained for the three-parameter distributions are used. Eq. (8) is estimated using

as initial values the 20 combinations of parameters from the beta 2 distribution, setting a = 1;

the 20 initial values of the Singh-Maddala distribution with p = 1; and the ones obtained

for the Dagum distribution, assuming q = 1. The estimation that reports the lowest RSS is

saved.

For the estimation of Ω, the mean (µ), the second-order moment (µ
(2)
j ) and the income

limits of each group(hj) must also be computed. Therefore, a consistent estimate of the

scale parameter is required. Let η denote the scale parameter of the distribution so that,

θ = (η,λ)′. We propose that η is estimated by solving the following equation:

X̄ = µ(η,λ∗), (12)

where X̄ is the sample mean, λ∗ are the EWMD estimates of the shape parameters from

Eq. (8) and µ(η,λ) =
∫
R+
xf(x; η,λ) dx. Closed expressions for µ(η,λ) for the distributions

belonging to the GB2 family are presented in Table 1.

Let θ∗ = (η∗,λ∗)′ be the consistent estimate of the parameters of the model obtained from

Eqs.(8) and (12) used to obtain a first-stage estimate of the weighting matrix (Ω∗ = Ω(θ∗)).

Because the first stage estimate (θ∗) is consistent, so is the weighting matrix Ω∗. Substituting

Ω∗ in (10), gives the second-stage estimator of θ as:

θ̂ = argmin
θ

M(θ)′Ω∗−1M(θ). (13)

Replacing Ω by a consistent estimate of this matrix does not affect the asymptotic properties

of the OMD estimator. It does however affect to the small-sample behavior of this estima-

tor, which is generally biased (Altonji and Segal, 1996). Prior research based on Monte

Carlo simulation suggests that the size of the bias depends on the underlying distribution

of the data, being particularly large for heavy-tailed distributions (Altonji and Segal, 1996).

The size of the bias also seems to increase with the number of overidentifying restrictions

(Clark, 1996). This limitation is overcome as the sample size gets large (Hansen, 1982),

but information on the sample size used to construct the grouped data is often unavailable.

It is therefore recommended to deploy both estimators and opt for EWMD results if the

parameter estimates differ substantially.
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3 Results

3.1 Estimation of the Gini coefficient using grouped data

In this section, we explore some practical issues regarding the estimation of economic in-

equality from grouped data. To consider a diverse set of observations, we use the most

comprehensive source of grouped income data: the WIID v3.4, released in January 2017.

This database contains information from 8817 datasets for 182 countries over the period

1867-2015. Each dataset may report different types of information: the Gini index is gener-

ally provided (99.6% of the observations); less frequently, information is given on five to ten

income shares (63.2%); finally, it is less common to report data on mean income (50.1%).

The WIID brings together a heterogeneous collection of datasets in terms of welfare concept,

unit of analysis, equivalence scale, quality of data and population and area coverage. For

this reason, it also includes metadata about these concepts along with information on the

sources from which data are taken. Therefore, even though the WIID is notable in terms of

geographical and time coverage, the lack of data comparability is often seen as a potential

limitation. In this study, however, we take advantage of its heterogeneity to examine whether

these features affect the performance of the different estimation methods in order to bring

them to the attention of potential users.

The first question that arises when the parametric approach is deployed is: given that

grouped data in the WIID is expected to come from surveys with reasonable sample sizes, is

the asymptotically efficient OMD a superior method than the unbiased EWMD to estimate

income inequality? To answer this question we estimate different parametric distributions

belonging to the GB2 family using both econometric strategies. Parameter estimates are

then used to compute the Gini index, which is compared with the observed Gini index

reported in the survey. We opt for the method that yields more accurate estimates of the

Gini coefficient because our interest lies in measuring income inequality.5

The optimisation function in Eq. (8) depends only on shape parameters, so EWMD can

be deployed in the 5570 country/year datasets which present information on at least five

income shares. An estimation of the shape parameters suffices to estimate the Gini index

because this inequality measure is scale-independent. To obtain OMD estimates from Eq.

(13), we also need information about the mean of the income distribution to estimate the

scale parameter, which is used to construct a consistent estimate of Ω (Eq.11). As a result,

5 The fact that one method provides more accurate estimates of the Gini index does not mean that it is

the most suitable econometric strategy for modelling relative inequality. To provide strong evidence in

this regard, the robustness of this result to the consideration of different inequality measures must be

examined. Unfortunately, other measures besides the Gini coefficient are rarely reported. However, we

explore this issue further in Section 3.2 with individual records.
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Table 2: Comparison of the performance of the OMD and the EWMD estimators of the
Gini coefficient

GB2 Beta 2 SM Dagum Lognormal Fisk

Total 25.17% 24.31% 14.84% 8.99% 14.68% 10.91%

5 income shares 37.66% 52.50% 34.87% 32.47% 35.58% 25.66%

10 income shares 24.55% 22.92% 13.81% 7.73% 13.67% 10.10%

Note: Results based on the 3286 datasets from the WIID, 154 of which provide
data on five income shares and 3132 on ten income shares. For all paramet-
ric distributions except the GB2, the Gini coefficient is estimated using the
formulas in Table 1. The Gini index of the GB2 distribution is estimated by
Monte Carlo simulation using samples of size N = 106.

this estimation method can be implemented only in 3286 country/year datasets from the

WIID.

Table 2 presents the proportion of observations for which OMD yields more accurate esti-

mates of the Gini index than EWMD. Our estimates for the GB2 distribution suggest that

OMD reports more accurate estimates than EWMD for only 25% of the datasets. This pro-

portion tends to decrease with the number of parameters of the distributions. By contrast,

we observe that the OMD estimator outperforms EWMD by a proportionally greater extent

when fewer income shares are considered. Therefore, in line with the findings presented in

prior simulation studies, these two results confirm that the size of the bias increases with

the number of overidentifying restrictions (Clark, 1996).

The second question of interest when examining inequality from grouped data is whether

parametric functional forms provide better approximations of the Lorenz curve than the

nonparametric methods used in prior studies, i.e. kernel density estimation and linear in-

terpolation. The relevance of this question lies in the overwhelming number of studies that

have opted for nonparametric techniques to estimate inequality measures (see Anand and

Segal (2008) for a review). The popularity of this approach seems to be supported by the

extended argument that parametric functional forms might lead to misspecification bias be-

cause ex-ante assumptions must be made about the shape of the income distribution and/or

the Lorenz curve. To compare the performance of the GB2 distribution and the related

sub-models for estimating income inequality with the nonparametric approach, conventional

goodness-of-fit measures, such as the residual sum of squares, are not informative because

linear interpolation is designed to perfectly match the income shares. Hence, as a goodness-

of-fit measure, we consider the gap between the survey Gini coefficient and the estimated

Gini indices using kernel density estimation, the lower bound approximation (Eq. (1)) and

different parametric functional forms (Table 1).

To estimate parametric models, we focus on EWMD estimates because this method seems
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to yield more accurate estimates of the Gini index.6 Another advantage of analysing EWMD

estimates is that a larger number of datasets can be examined because the estimation of Eq.

(8) does not require information on the mean income. We reformulate Eq. (8) to estimate six

parametric distributions that belong to the GB2 family for the 5570 country/year datasets

with at least five income shares available. Once these models are estimated, we compute the

estimated Gini indices and the lower bound of this inequality measure derived from linear

interpolation of the Lorenz curve. This approximation of the Gini index assumes equality of

incomes within shares. Hence, its value must be lower than the survey Gini index computed

with individual records because it does not consider variation within income shares. We find,

however, that this relationship is violated in 355 datasets. This incongruent result might

have two potential explanations. Because Eq. (1) is an approximation of the lower bound,

it has an inherent error that may lead to such inconsistencies. It could also be explained by

the use of different data to estimate the Gini index and the income shares included in the

WIID database. Hence, we opt for removing these datasets to facilitate the discussion of the

results.7

Table 3 presents the difference between the survey Gini index and the parametric and non-

parametric estimates. To facilitate the comparison of these two methodologies, we report

the results in absolute value. Our estimates reveal that the lower bound yields a very poor

approximation of the Gini index. The gap with the observed Gini index is more than 0.01

in 56% of the cases. Estimates based on kernel density estimation present larger estima-

tion errors, which are above 0.01 in 75% of the datasets analysed. The parametric approach,

however, provides much more accurate results, with substantially smaller differences between

the estimated and the observed Gini indices. On average, lower bound estimates report an

error three to four times larger than most parametric models. Among the parametric mod-

els, the GB2 seems to outperform the other sub-models, with estimation errors of less than

0.01 for 92% of the datasets. For the particular cases of this family, even the two-parameter

distributions report fairly accurate Gini indices, which differ by less than 0.01 in 91% of the

cases. Estimates of the Gini index with errors greater than 0.1 are more frequent for the

nonparametric approach. All parametric specifications report the same proportion of esti-

mates with differences larger than 0.1, the 0.6%, corresponding to three datasets: Mauritius

in 1980 and Zambia in 2004 (rural and urban). In these three cases, the parametric and the

nonparametric approaches report very similar estimates of the Gini index. For instance, in

Mauritius the lower bound is 0.321 and the estimate for the GB2 distribution is 0.341, but

the WIID reports a survey Gini coefficient of 0.457. Hence, we believe that the survey data

of these datasets might be affected by some kind of measurement error.

6 We present the results for the OMD estimates in Appendix A (Table A1), which seem to confirm the

better performance of the parametric models in general, and the GB2 distribution in particular.
7 Overall, the estimates for the whole sample with 5570 country/year datasets point to the same conclu-

sions as for the restricted sample (results available upon request).
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Table 3: Absolute error in the estimation of the Gini index using linear interpolation and
different parametric distributions of the GB2 family.

Distribution Mean [0, 0.01) [0.01, 0.02) [0.02, 0.05) [0.05, 0.1) [0.1, )

Lower bound 0.0140 44.28% 39.50% 14.57% 1.42% 0.23%

KDE 0.0214 24.52% 33.33% 35.88% 5.92% 0.36%

GB2 0.0033 91.95% 4.89% 2.40% 0.71% 0.06%

B2 0.0040 91.68% 4.99% 2.53% 0.75% 0.06%

SM 0.0040 91.47% 5.25% 2.49% 0.73% 0.06%

Dagum 0.0041 91.31% 5.41% 2.51% 0.71% 0.06%

Lognormal 0.0043 91.26% 5.64% 2.24% 0.81% 0.06%

Fisk 0.0043 91.18% 5.45% 2.61% 0.71% 0.06%

Note: Results based on 5215 datasets from the WIID. Parametric models are
estimated by EWMD. The lower bound of the Gini index is obtained using Eq.
(1). Kernel density estimates (KDE) computed using a Gaussian kernel with
optimal bandwidth (Silverman, 2018). For the parametric distributions the Gini
index is estimated by Monte Carlo simulation using samples of size N = 106.

Although the results above point to a better performance of the parametric models than

the nonparametric approach, only 16% of the observations show large deviations (higher

than 0.02) between the lower bound and the observed Gini index. Therefore, it could be

argued that the nonparametric approach provides researchers with an intuitive and fairly

accurate tool for assessing inequality in most cases. However, since our sample includes Gini

coefficients of very different magnitudes, the error should be evaluated in relative terms.

Table 4 shows the difference between the observed and the estimated Gini coefficients relative

to the value reported in the survey. These results strongly suggest that the lower bound yields

highly inaccurate estimates of the Gini index, which is underestimated by more than 2% in

87% of the datasets.

These estimates reflect not only that linear interpolation provides a poor approximation of

the Lorenz curve but also that parametric distributions lead to highly reliable estimates of the

Gini index. The GB2 distribution seems to offer the best estimates, with 84% of estimations

providing Gini coefficients that deviate by less than 1% from the survey Gini index. For the

three-parameter functional forms, the figure drops to 80%. The two-parameter functional

forms also present fairly accurate results for slightly more than 70% of the datasets.

Due to the inherent heterogeneity of the WIID in terms of welfare definition and data quality,

another relevant question is whether these data characteristics affect the accuracy of the

previous estimates. More importantly, does the estimation error decrease with the number

of income shares? The answer to the last question is quite obvious for the nonparametric

approach: the more income shares there are, the better the approximation of the Lorenz
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Table 4: Relative error in the estimation of the Gini index using linear interpolation and
different parametric distributions of the GB2 family

Distribution [0%, 1%) [1%, 2%) [2%, 5%) [5%, 10%) [10%, )

Lower bound 3.16% 10.11% 72.66% 11.01% 3.07%

KDE 8.28% 9.73% 29.77% 45.07% 7.31%

GB2 84.39% 5.85% 6.40% 2.13% 1.23%

B2 77.01% 12.54% 6.98% 2.24% 1.23%

SM 80.33% 9.15% 7.11% 2.19% 1.23%

Dagum 80.25% 9.03% 7.40% 2.15% 1.17%

Lognormal 72.58% 16.03% 7.96% 2.21% 1.23%

Fisk 74.96% 14.06% 7.54% 2.26% 1.19%

Note: Results based on 5215 datasets from the WIID. Parametric
models are estimated by EWMD. The lower bound of the Gini index
is obtained using Eq. (1). Kernel density estimates (KDE) computed
using a Gaussian kernel with optimal bandwidth (Silverman, 2018).
For the parametric distributions except the GB2, the Gini coefficient
is estimated using the formulas in Table 1. The Gini index of the
GB2 distribution has been estimated by Monte Carlo simulation using
samples of size N = 106.

curve becomes, hence the more reliable the estimate of the Gini coefficient is. For parametric

models, however, five income shares might suffice to represent the shape of the Lorenz curve

as rigorously as with ten data points.

Table 5 presents a summary of the absolute error in the estimation of the Gini index using

the GB2 distribution, as the best parametric approximation of the Lorenz curve, linear in-

terpolation, and kernel density estimation. We present the mean and the standard deviation

(in parenthesis) of the difference in absolute terms between the survey and the estimated

Gini coefficient for the four new welfare categories introduced in the WIID v3.4: consump-

tion, disposable income, gross income and others;8 and for different data quality levels: high,

average, low and not known. To examine the effect of using a larger number of moments,

we present these results broken down into five and ten income shares. In this regard, our

results suggest that, when linear interpolation is used, the error in the estimation of the Gini

index with only five income shares is two to three times higher than in datasets with ten

data points. In the parametric framework, this pattern is not so obvious.

Overall, estimates performed with a larger number of income shares are found to be more

accurate. The difference in the estimation error might be considerable in some categories,

8 This new classification is a simplified version of the previous classification by welfare definition, which

combines categories that are close to each other. See https://www.wider.unu.edu/sites/default/

files/Data/WIID3.4 for a detailed description of the new labels.
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Table 5: Absolute error in the estimation of the Gini index for different welfare definitions
and quality standards

Lower bound KDE GB2 distribution

10 shares 5 shares 10 shares 5 shares 10 shares 5 shares

Consumption 0.0111 0.0292 0.0178 0.0165 0.0047 0.0158

(857, 124) (0.0097) (0.0264) (0.014) (0.0216) (0.0137) (0.0329)

Welfare Income, disposable 0.0124 0.0312 0.0228 0.0205 0.0031 0.0118

definition (2686, 112) (0.0085) (0.0206) (0.0155) (0.021) (0.0081) (0.0184)

Income, gross 0.0116 0.0272 0.0247 0.0239 0.0108 0.0121

(384, 325) (0.012) (0.0162) (0.0216) (0.0211) (0.015) (0.0147)

Other 0.0132 0.0329 0.0224 0.0279 0.0031 0.0081

(1031, 51) (0.0157) (0.0158) (0.0197) (0.0286) (0.0148) (0.0151)

Average 0.0108 0.0268 0.0197 0.0177 0.003 0.0075

(1645, 139) (0.0076) (0.0159) (0.0141) (0.0193) (0.0089) (0.0135)

Data High 0.0122 0.0324 0.0223 0.0246 0.0025 0.0135

quality (2559, 167) (0.0086) (0.0243) (0.0156) (0.0224) (0.0079) (0.0298)

Low 0.0159 0.0265 0.0272 0.0213 0.0125 0.0126

(642, 261) (0.021) (0.0167) (0.0255) (0.0219) (0.0225) (0.0155)

Not known 0.0131 0.0352 0.0185 0.031 0.0025 0.0228

(112, 45) (0.0076) (0.0224) (0.0128) (0.0269) (0.0029) (0.0164)

Note: The number of datasets used to compute the mean and the standard deviation of the
error in the estimation of the Gini index are presented in parenthesis below the label of the
corresponding category, for ten and five income shares respectively. The GB2 distribution is
estimated by EWMD and the Gini index is computed by Monte Carlo simulation using samples
of size N = 106. The lower bound of the Gini index is computed using Eq. (1). Kernel density
estimates (KDE) computed using a Gaussian kernel with optimal bandwidth (Silverman, 2018).
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such as disposable income or high data quality, with estimation errors four to five times

larger when five income shares are used. In other categories, however, the accuracy of the

estimates does not seem to be affected by the number of moments. Low-quality datasets

show, on average, estimation errors of the same magnitude, but with greater variation, for

the estimation with ten data points. Hence, we might find larger estimation errors in datasets

with ten income points than with five for this particular category. This result should not be

interpreted as a recommendation to use five income shares for the estimation of parametric

models with datasets of poor quality. Instead, this should be seen as an argument in favour

of the parametric approach, which even with very few points of the Lorenz curve might yield

reliable estimates.

Despite the fact that we are primarily interested in assessing income inequality, by comparing

Gini indices alone we are not able to assert the supremacy of any parametric model. To

provide a complete picture of the goodness-of-fit of the different parametric models, we now

turn our attention to measures that assess the performance of nested models considering

not only the accuracy but also the parsimony of the model by penalising for the number of

parameters. Table 6 presents the proportion of observations for which the models in rows

outperform the distributions in columns according to the Akaike information criterion (AIC),

which, for the EWMD estimator in (8), takes the form (see Bresson, 2009)

aic =
e2k/J

J
M(θ)′M (θ),

where k is the number of parameters and e2k/J is a penalty term that increases with the

numbers of parameters of the model.9

Our results suggest again that the GB2 distribution is the most suitable model for income

and consumption variables, although the three-parameter models seem to be preferred in

about 15 percent of the cases. As regards the three-parameter distributions, the beta 2 and

the Dagum distributions seem to perform equally well, but the Singh-Maddala distribution

seems to yield more accurate estimates in most cases. As expected, the two-parameter

models rarely improve the goodness-of-fit of the GB2 and the three-parameter functional

forms.

3.2 Estimation of distributionally-sensitive inequality measures

from grouped data

So far, our analysis suggests that the GB2 family includes several models for obtaining reli-

able estimates of the Gini index. However, the analysis of income inequality rarely relies on

9 The results for the Schwarz Bayesian information criterion can be found in Appendix A, Table A2.
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Table 6: Goodness-of-fit matrix based on the AIC

GB2 Beta 2 SM Dagum Lognormal Fisk

GB2 .. 87% 85% 88% 98% 98%

Beta 2 13% .. 42% 48% 96% 83%

Singh-Maddala 15% 58% .. 62% 93% 89%

Dagum 12% 52% 38% .. 87% 89%

Lognormal 2% 4% 7% 13% .. 44%

Fisk 2% 17% 11% 11% 56% ..

Note: Proportion of observations for which distributions in rows
present better fit in terms of the AIC statistic than distributions in
columns. Results based on 5215 datasets of the WIID. Parametric
models are estimated by EWMD.

just one measure. Depending on the properties of the inequality measure and its sensitivity

to the top or the bottom part of the distribution, different inequality indices may reflect

diverging trends. Hence, assessments of the performance of different models in estimating

income inequality should not be based solely on the Gini coefficient. Because this measure is

proportional to the area between the Lorenz curve and the egalitarian line, differences below

the observed income shares can be offset by overestimated income shares. This case is illus-

trated in Figure 2, which presents the survey income shares (black points) for Argentina in

1961 and the fits of the Singh-Maddala (red line) and the lognormal (black line) distributions.

This graph reveals that the Singh-Maddala distribution provides a highly accurate fit and

clearly outperforms the lognormal distribution. However, a comparison of the survey and the

estimated Gini coefficients suggests a better performance of the lognormal distribution for

estimating income inequality: the survey Gini index is 0.531 and the estimated Gini indices

of the Singh-Maddala and the lognormal distributions are 0.516 and 0.522 respectively.

The apparently better performance of the lognormal distribution is, therefore, a statistical

artifact caused by the manner in which the Gini coefficient is defined. If we compared the

observed and the estimated values of inequality measures more sensitive to the left tail, the

Singh-Maddala distribution would be declared as a superior model. For this kind of measures,

the lognormal distribution would overestimate inequality levels because its Lorenz curve lies

far below the sample income shares at the bottom of the distribution. Unfortunately, no

measures other than the Gini coefficient are reported in the WIID.

To extend the insights about the estimation of income inequality from grouped data, we

rely on data from the Luxembourg Income Study (LIS, 2020). The LIS database contains

harmonised microdata on disposable income collected from nearly 50 countries for the period

from 1980 to 2016. Using the 278 datasets of individual records available in the ten waves of

the LIS database, we reconstruct grouped data with the same structure as the WIID: five and
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Figure 2: Lorenz curve for Argentina (1961): Singh-Maddala (red) and lognormal (black)
distributions
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ten income shares, the mean and the Gini coefficient. These statistics are obtained following

the methodological guidelines of the LIS.10 We consider equivalised disposable income which

is equal to household income divided by the square root of household size. We exclude all

missing observations and records with zero disposable income. For the remaining sample,

LIS proposes applying top and bottom coding. Equivalised income is bottom-coded at 1%

of equivalised mean and top-coded at 10 times the median household income.11 Finally,

household weights are multiplied by household size to obtain person-adjusted weights.

The advantage of working now with individual data is that the analysis does not have to

be restricted to the Gini coefficient. To examine the reliability of the parametric models in

estimating different inequality measures, we also calculate the Atkinson index of the surveys

10 For a detailed description of these guidelines see http://www.lisdatacenter.org/data-access/

key-figures/methods/ and the R code used to compute of inequality measures can be downloaded from

http://www.lisdatacenter.org/wp-content/uploads/files/access-key-programs-r-ineq.txt
11 The aim of this section is to expand the results presented in Section 3.1. To that end, it is essential

to replicate as accurately as possible the context of limited information under which those results were

obtained. Hence, although bottom and top coding applied the income variable might be debatable,

we apply this procedure not only because of LIS recommendations but because WIID data from LIS

is reported with censoring. For this reason, even though we are deliberately introducing a potential

source of measurement error, we do not consider the double censoring in the estimation of the parametric

models because we do not have such information when using grouped data.
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using the following expressions:

Aε = 1−

(
1

N

N∑
i=1

(
xi
µ

)1−ε
) 1

1−ε

, ε 6= 1,

Aε = 1− 1

µ

N∏
i=1

x
1/N
i , ε = 1,

where ε is an inequality aversion parameter, which makes this measure more sensitive to the

left tail of the income distribution as it increases.

The income shares from the LIS database are used to replicate the analysis in Section 3.1,

comparing estimated and survey inequality measures. Tables 7 and 8 show the absolute error

in the estimation of the Gini coefficient and the Atkinson indices from grouped data in the

form of ten and five income shares respectively. Parametric models are estimated by EWMD

following the procedure presented in Section 2.2.12 Since the two-parameter distributions

seem to lead to less reliable estimates of inequality measures, we only include the results of

the lognormal distribution because this model has conventionally been employed to estimate

the size distribution of income.13

Our results suggest that all functional forms seem to lead to very accurate estimates of the

Gini coefficient, with estimates that differ from the observed value by less than 0.02. For the

Atkinson index, the accuracy of the estimates seems to depend on the inequality aversion

parameter. Our results suggest that the estimates of this inequality measure become less

reliable as the value of this parameter increases. The GB2, the Singh-Maddala and the

Dagum distributions show accurate estimates of the Atkinson measure for parameter values

lower than one. When the sensitivity parameter is greater than 1, the measure is highly

sensitive to the lower end of the distribution, meaning that the value of this inequality

measure is largely influenced by the left tail of the distribution. Hence, even if the bulk of

the distribution is adequately modeled by the parametric model, relatively small errors in

the representation of the left tail might bias the estimates of the Atkinson index. Although

the reliability of the estimates is inversely associated with the inequality aversion parameter,

the GB2 and the Singh-Maddala distributions report relatively accurate estimates of the

12 Results based on the estimation of parametric distributions by OMD are presented in Tables A3 and

A4 in Appendix A. Our estimates suggest that the accuracy does not seem to be strongly affected by

the estimation method in the case of the GB2 distribution, although, on average, EWMD estimates are

generally more reliable than OMD. For the three-parameter distributions, however, OMD estimates of

inequality measures highly sensitive to the bottom tail are more accurate than EWMD estimates. For

the lognormal distribution, EWMD estimates seem to present much larger estimation errors than OMD

for all inequality measures except for the Gini index.
13 We have also computed the absolute error in the estimation of different inequality measures for the Fisk

distribution. These results are available upon request.
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Table 7: Absolute difference between estimated and observed inequality measures. Ten
income shares

Lower bound KDE GB2 SM Dagum Lognormal

Mean 0.0071 0.0180 0.0007 0.0012 0.0014 0.0022

[0, 0.01) 85.97% 11.51% 99.64% 98.92% 98.92% 100%

Gini [0.01, 0.02) 14.03% 52.16% 0.36% 1.08% 1.08% 0%

Index [0.02, 0.05) 0% 35.25% 0% 0% 0% 0%

[0.05, 0.1) 0% 1.08% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0066 0.0096 0.0020 0.0031 0.0038 0.0045

Atkinson [0, 0.01) 98.56% 65.11% 98.92% 94.96% 88.13% 96.4%

index (ε = 0.5) [0.01, 0.02) 1.44% 31.65% 1.08% 3.96% 10.79% 3.6%

[0.02, 0.05) 0% 2.88% 0% 1.08% 1.08% 0%

[0.05, 0.1) 0% 0.36% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0131 0.0261 0.0048 0.0065 0.0072 0.0119

[0, 0.01) 27.7% 8.99% 89.93% 80.94% 75.18% 47.48%

Atkinson [0.01, 0.02) 67.63% 16.19% 8.99% 17.27% 19.78% 38.13%

index (ε = 1) [0.02, 0.05) 4.68% 74.10% 1.08% 1.08% 3.96% 14.03%

[0.05, 0.1) 0% 0.72% 0% 0.72% 1.08% 0.36%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0294 0.0588 0.0160 0.0173 0.0183 0.0297

[0, 0.01) 3.96% 2.16% 44.24% 38.49% 42.45% 20.5%

Atkinson [0.01, 0.02) 27.7% 3.24% 23.74% 28.78% 25.54% 20.5%

index (ε = 1.5) [0.02, 0.05) 59.71% 29.14% 30.58% 28.42% 25.9% 40.65%

[0.05, 0.1) 8.63% 60.43% 1.44% 3.6% 5.04% 17.27%

[0.1, ) 0% 5.04% 0% 0.72% 1.08% 1.08%

Note: Results based on 278 datasets of the LIS database. Parametric models are estimated by
EWMD. All inequality measures are estimated by Monte Carlo simulation using samples of size
N = 106. The lower bound of the Gini index is computed using Eq. (1). Kernel density estimates
(KDE) computed using a Gaussian kernel with optimal bandwidth (Silverman, 2018).
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Table 8: Absolute difference between estimated and observed inequality measures. Five
income shares

Lower bound KDE GB2 SM Dagum Lognormal

Mean 0.0225 0.0157 0.0013 0.0017 0.0019 0.0027

[0, 0.01) 0% 30.94% 98.92% 98.92% 98.92% 98.92%

Gini [0.01, 0.02) 46.76% 53.60% 1.08% 0.72% 0% 1.08%

Index [0.02, 0.05) 53.24% 12.59% 0% 0.36% 1.08% 0%

[0.05, 0.1) 0% 2.88% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0133 0.0085 0.0028 0.0036 0.0041 0.0048

Atkinson [0, 0.01) 26.26% 82.37% 97.84% 92.45% 87.05% 96.76%

index (ε = 0.5) [0.01, 0.02) 58.99% 7.55% 1.8% 6.47% 11.87% 2.88%

[0.02, 0.05) 14.75% 8.99% 0.36% 1.08% 1.08% 0.36%

[0.05, 0.1) 0% 1.08% 0% 0% 0% 0%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0247 0.0211 0.0055 0.0063 0.0064 0.0124

[0, 0.01) 0% 15.11% 86.69% 82.37% 78.42% 43.53%

Atkinson [0.01, 0.02) 32.37% 34.17% 12.59% 15.83% 17.27% 42.09%

index (ε = 1) [0.02, 0.05) 67.63% 48.92% 0.72% 1.8% 4.32% 14.03%

[0.05, 0.1) 0% 1.80% 0% 0% 0% 0.36%

[0.1, ) 0% 0% 0% 0% 0% 0%

Mean 0.0458 0.0513 0.0166 0.0163 0.0159 0.0302

[0, 0.01) 0% 3.24% 43.53% 40.65% 45.68% 17.99%

Atkinson [0.01, 0.02) 4.32% 7.91% 21.58% 27.7% 28.06% 21.22%

index (ε = 1.5) [0.02, 0.05) 56.47% 37.05% 33.09% 28.06% 21.22% 42.09%

[0.05, 0.1) 38.49% 47.84% 1.8% 3.6% 5.04% 17.63%

[0.1, ) 0.72% 3.96% 0% 0% 0% 1.08%

Note: Results based on 278 datasets of the LIS database. Parametric models are estimated by
EWMD. All inequality measures are estimated by Monte Carlo simulation using samples of size
N = 106. The lower bound of the Gini index is computed using Eq. (1). Kernel density estimates
(KDE) computed using a Gaussian kernel with optimal bandwidth (Silverman, 2018).

Atkinson index (ε = 1.5), which differ by less than 0.02 in about 70% of the datasets.

A comparison of the figures in Tables 7 and 8 reveals that the error in the estimation of in-

equality measures is slightly larger if the estimates are obtained from 5 data points. However,

even with five income shares, the GB2 family of income distributions yields reliable estimates

of inequality measures, which confirms the claims made in Section 3.1 that parametric mod-

els provide an excellent methodological framework for estimating income inequality from

grouped data, even when only a few points of the Lorenz curve are available.

25



3.3 Estimation of income inequality in bimodal distributions

A great deal of the criticism directed at the use of parametric models to estimate the Lorenz

curve from grouped data is centered on the misspecification error that may arise as a conse-

quence of imposing a particular functional form. Although the GB2 family is acknowledged

to be an outstanding candidate to model income variables, it is only able to represent uni-

modal and zeromodal distributions. These are the expected shapes of the distribution of

income in most countries: unimodal distributions are conventionally observed in developed

countries with a well-established middle class, while zeromodal distributions are characteris-

tic of developing countries, which have very high poverty rates. However, the conjunction of

these two factors leads to bimodal distributions, which are typically observed in economies

in transition.

Grouped data on a few points of the Lorenz curve are not informative enough to ascertain the

number of modes of the distribution.14 The parametric approach requires that the functional

form of the distribution be defined ex-ante, so a conservative strategy is to estimate a general

model that fits the regular features of the income distribution, typically with zero or one

mode. When fitted to bimodal distributions, the GB2 family approximates the bimodality

by unimodal/zeromodal functional forms, thus leading to inaccurate estimates. Although

bimodal distributions are the exception rather than the rule, prior research has repeatedly

emphasised the potential consequences of using parametric models in those cases, thus jus-

tifying the use of nonparametric techniques on grounds of reliability and practicability.

This section examines the size of the error in the estimation of inequality measures using the

GB2 family when the income distribution has a bimodal pdf. We use Monte Carlo simulation

to obtain synthetic samples from a mixture of a Weibull and a truncated normal distribution

with pdf of the following form:

f(xi; β, α, ω, µ, σ) = ω
β

αβ
xβ−1i exp

[
−
(xi
α

)β]
+ (1− ω)

φ(xi;µ, σ
2)

Φ(µ/σ)
, (14)

where ω, 0 ≤ ω ≤ 1, represents the mixing proportion of the Weibull distribution with scale

parameter α and shape parameter β; φ(x, µ, σ2) is the pdf of a normal distribution with

mean µ and variance σ2 and Φ() represents the cdf of the standard normal distribution.

The pdf in (14) is used by Paap and van Dijk (1998) to estimate the cross-sectional dis-

tribution of income in 120 countries in six periods of time from 1960 to 1989. We rely on

their estimates because, as observed in Figure A1, they depict bimodal shapes which are

particularly representative of income variables. The simulated samples show a variety of

shapes of the density function, ranging from a unimodal distribution with a heavy right tail

14 Krause (2014) develops a method for determining whether a distribution has zero or one mode, but

gives no insights on the potential bimodality of the distribution.
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to a bimodal distribution where the two components of the mixture are clearly identified.

To illustrate the situation in which only grouped data is available, we compute five and

ten income shares from the simulated samples of bimodal distributions to obtain limited

information with the same structure as the WIID. We also compute the Gini index and the

Atkinson measure setting ε = 0.5, 1, 1.5. These values of the inequality measures are taken as

a benchmark for evaluating the performance of the GB2 family to estimate income inequality

in bimodal distributions. The simulated grouped data are used to estimate different models

of the GB2 family by EWMD, deploying the estimation techniques described in Section

2.2. The corresponding Gini index and Atkinson measures are estimated by Monte Carlo

simulation.

To assess the size of the error in the estimation of relative inequality measures, we calculate

the absolute difference between estimated measures and those obtained from the bimodal

distributions. A summary of this information is presented in Table 9, which shows the average

error in the estimation of the Gini coefficient and the Atkinson index for different models of

the GB2 family. We also rely on kernel density estimation and compute the corresponding

lower bound of these measures to analyse whether the nonparametric approach leads to more

accurate estimates when the underlying income distribution has two modes.

Nonparametric techniques are argued to let the data speak for themselves because they only

need to make very weak assumptions on the distribution. Despite its flexibility, our estimates

suggest that kernel estimation reports large estimation errors in bimodal distributions that

are estimated using five or ten income shares. Our estimates also reveal that the gap between

the estimation errors of the parametric and the lower bound is substantially narrower than in

the previous results (Tables 3, 7 and 8), which are mostly based on unimodal distributions.

As expected, the GB2 seems to provide more accurate estimates of inequality measures than

the three-parameter models. Our results also suggest that this model yields, on average,

more accurate estimates of the Gini index than the lower bound. This result is also observed

for the Atkinson measures which are very sensitive to the left tail of the distribution. By

contrast, when the value of the inequality aversion parameter is low, the lower bound yields

more reliable estimates than the GB2 distribution. It is worth mentioning, however, that any

of the estimation techniques systematically leads to more reliable estimates of the inequality

measures.15

As mentioned above, the size of the estimation error using the lower bound approximation

increases substantially if the estimation is based on five rather than ten income shares.

It is therefore surprising that, on average, it still leads to a better approximation of the

Atkinson index with ε = 0.5 than the GB2 distribution. The estimation of the parametric

models is dominated by the first mode, thus providing an accurate fit for the bottom part

15 The complete results for the six simulated samples are available upon request.
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Table 9: Average absolute difference between estimated and observed inequality measures:
ten and five income shares

Ten income shares

Lower bound KDE GB2 Beta 2 SM Dagum Lognormal

Gini index 0.0085 0.0360 0.0071 0.0082 0.0092 0.0110 0.0057

Atkinson (ε = 0.5) 0.0053 0.0260 0.0108 0.0153 0.018 0.0261 0.0093

Atkinson (ε = 1) 0.0132 0.0283 0.0161 0.0268 0.0349 0.0535 0.0291

Atkinson (ε = 1.5) 0.0331 0.0302 0.0259 0.0532 0.0739 0.1332 0.0576

Five income shares

Lower bound KDE GB2 B2 SM DA LN

Gini index 0.0308 0.0497 0.0181 0.0177 0.0199 0.0213 0.0149

Atkinson (ε = 0.5) 0.0160 0.0324 0.0276 0.0258 0.0327 0.0359 0.0148

Atkinson (ε = 1) 0.0315 0.0345 0.0119 0.0117 0.0210 0.0285 0.0293

Atkinson (ε = 1.5) 0.0610 0.0300 0.0081 0.0109 0.0148 0.0392 0.0571

Note: Results based on simulated samples of size 104 of mixtures of a Weibull and a normal
distribution with the following parameter values: (β, µ, α, σ, ω)= (2.02, 5.24, 1.4, 6.27, 0.7),
(1.79, 6.68, 1.68, 6.5, 0.73), (1.63, 8.29, 2.03, 7.05, 0.73), (1.38, 10.66, 2.76, 3.13, 0.82), (1.35,
11.77, 2.95, 2.18, 0.82), (1.25, 13.32, 3.15, 3.02, 0.84). All inequality measures are estimated
by Monte Carlo simulation using samples of size N = 106. The lower bound of the Gini index
is computed using Eq. (1). Kernel density estimates (KDE) computed using a Gaussian kernel
with optimal bandwidth (Silverman, 2018).

of the distribution at the expense of a relatively poor fit in the right tail of the distribution.

Hence, the GB2 tends to yield more accurate estimates for the measures that are particularly

sensitive to the left tail of the distribution.

4 Conclusions

Over the past few decades, there has been growing interest in the distributional patterns of

income in both, economic literature and the international policy arena. The introduction

of the Sustainable Development Goals has highlighted the relevance of this topic since Goal

10 calls for a decrease in income inequalities, thus positioning disparities as a key concern,

not only because wellbeing is a prerogative of all citizens, but also because sustained de-

velopment itself is impeded by high inequalities. Hence, addressing inequality trends has

become essential, but individual data on income or consumption are often unavailable. In-

stead, grouped data from nationally representative surveys are used in most cases to assess

the trends in inequality levels.

In this context of limited information, most prior research on global inequality relies on

lower bounds of inequality measures, constructed under the assumption of equality of in-
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comes within each income share. While being an intuitive method, it obviously leads to

biased estimates of inequality measures. To provide reliable results, we must define more

plausible assumptions on income dynamics within shares. In this paper, we have explored

the practical implications of using parametric and nonparametric models to estimate income

inequality from grouped data. We have focused first on the estimation of parametric models,

comparing the performance of EWMD and OMD estimators to estimate the GB2 family of

distributions. Our estimates reveal that EWMD yields more accurate estimates of the Gini

index than OMD in most cases. Therefore, when the priority is to obtain unbiased esti-

mates of inequality measures, EWMD should be preferred to OMD, even though this means

sacrificing asymptotic efficiency.

One potential limitation of using parametric models is the requirement to impose a particular

functional form to describe the income distribution, which could lead to biased estimates if

the model is unable to represent income dynamics adequately. Indeed, misspecification bias

has been the central argument in favour of using lower-bound approximations of inequality

from grouped data. To address this issue, we have compared the performance of the GB2

family in estimating different inequality measures to kernel density estimation and the lower-

bound approximation. Our results suggest that the parametric approach provides much more

accurate results. Even two-parameter distributions yield more reliable estimates of inequality

measures than the lower bound, although more complex models are generally preferred to

the simplest ones. Only for bimodal distributions, do the lower bound and the parametric

approach report estimates with similar precision.

Our estimates therefore suggest that much of the research on economic inequality relies on

severely biased estimates. We show that the GB2 distribution provides an excellent ap-

proximation of the income distribution, which yields reliable estimates of relative inequality

measures in virtually all cases. In the light of these findings, we expect the development of

the GB2group R package, which deploys the estimation of this model from grouped data in

the form of income shares by EWMD and OMD, to help promote the use of this family of

distributions to obtain improved estimates on income inequality.
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Appendix A

Table A1: Absolute error in the estimation of the Gini index using linear interpolation and
different parametric distributions of the GB2 family. OMD estimation

Distribution Mean [0, 0.01) [0.01, 0.02) [0.02, 0.05) [0.05, 0.1) [0.1, )

Lower bound 0.0103 70.70% 22.31% 5.71% 0.94% 0.34%

GB2 0.0040 91.70% 5.26% 2.22% 0.71% 0.11%

B2 0.0069 80.95% 12.06% 5.75% 1.13% 0.11%

SM 0.0090 75.13% 12.21% 10.37% 2.10% 0.19%

Dagum 0.0110 65.65% 18.67% 13.67% 1.92% 0.11%

Lognormal 0.0140 51.95% 24.53% 21.37% 1.99% 0.15%

Fisk 0.0186 39.67% 25.69% 29.26% 4.85% 0.53%

Note: Results based on 2662 datasets from the WIID. Parametric models are
estimated by OMD. For the parametric distributions, the Gini coefficient is es-
timated by Monte Carlo simulation using samples of size N = 106.

Table A2: Goodness-of-fit matrix based on the Schwarz Bayesian information criterion

GB2 Beta 2 Singh-Maddala Dagum Lognormal Fisk

GB2 .. 87% 85% 88% 98% 98%

Beta 2 13% .. 42% 48% 96% 84%

Singh-Maddala 15% 58% .. 62% 93% 89%

Dagum 12% 52% 38% .. 87% 89%

Lognormal 2% 4% 7% 13% .. 44%

Fisk 2% 16% 11% 11% 56% ..

Note: Proportion of observations for which distributions in rows present better
fit than distributions in columns in terms of the Schwarz Bayesian informa-
tion criterion expressed as bic = Jk/J−1M(θ)′M(θ). Results based on 5215
datasets from the WIID. Parametric models are estimated by EWMD.
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Figure A1: Histograms and kernel density functions of simulated samples from a mixture of
a Weibull and a truncated normal distribution for different parameter values

β = 2.02
µ = 5.24
α = 1.4
σ = 6.27
ω = 0.7

0.0

0.1

0.2

0.3

0.4

0 10 20 30
simulated income data

de
ns
ity

β = 1.79
µ = 6.68
α = 1.68
σ = 6.5
ω = 0.73

0.0

0.1

0.2

0.3

0 10 20 30
simulated income data

de
ns
ity

β = 1.63
µ = 8.29
α = 2.03
σ = 7.05
ω = 0.73

0.0

0.1

0.2

0 10 20 30
simulated income data

de
ns
ity

β = 1.38
µ = 10.66
α = 2.76
σ = 3.13
ω = 0.82

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20
simulated income data

de
ns
ity

β = 1.35
µ = 11.77
α = 2.95
σ = 2.18
ω = 0.82

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20
simulated income data

de
ns
ity

β = 1.25
µ = 13.32
α = 3.15
σ = 3.02
ω = 0.84

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25
simulated income data

de
ns
ity

Note: Simulated samples of size N = 105. The histograms have been normalised so that the area under the
bars is equal to one, making them comparable with the kernel density functions
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Table A3: Absolute error in the estimation of inequality measures by OMD using ten income
shares

Inequality measure Absolute difference GB2 Beta 2 Singh-Maddala Dagum Lognormal

Mean 0.0014 0.0026 0.0035 0.0080 0.0075

[0, 0.01) 99.64% 96.04% 90.29% 79.5% 71.94%

Gini [0.01, 0.02) 0.36% 3.60% 5.76% 8.27% 23.02%

Index [0.02, 0.05) 0% 0.36% 3.96% 11.15% 4.68%

[0.05, 0.1) 0% 0% 0% 1.08% 0.36%

[0.1, ) 0% 0% 0% 0% 0%

Mean 0.0024 0.0040 0.0050 0.0088 0.0042

[0, 0.01) 97.84% 96.4% 86.33% 80.94% 93.17%

Atkinson [0.01, 0.02) 2.16% 2.16% 6.83% 5.4% 5.04%

index (ε = 0.5) [0.02, 0.05) 0% 1.44% 6.83% 12.23% 1.8%

[0.05, 0.1) 0% 0% 0% 0.3597% 0%

[0.1, ) 0% 0% 0% 1.0791% 0%

Mean 0.0049 0.0080 0.0076 0.0100 0.0070

[0, 0.01) 90.65% 69.42% 76.26% 73.02% 77.7%

Atkinson [0.01, 0.02) 9.35% 28.78% 18.35% 12.95% 20.86%

index (ε = 1) [0.02, 0.05) 0% 1.80% 5.40% 12.59% 1.44%

[0.05, 0.1) 0% 0% 0% 0.72% 0%

[0.1, ) 0% 0% 0% 0.72% 0%

Mean 0.0147 0.0200 0.0165 0.0161 0.0214

[0, 0.01) 47.12% 27.34% 40.65% 43.17% 21.94%

Atkinson [0.01, 0.02) 25.18% 30.22% 25.18% 25.90% 31.30%

index (ε = 1.5) [0.02, 0.05) 26.26% 39.57% 31.30% 26.98% 43.17%

[0.05, 0.1) 1.44% 2.88% 2.88% 3.96% 3.60%

[0.1, ) 0% 0% 0% 0% 0%

Note: Results based on 278 datasets from the LIS database. Parametric models are estimated by OMD.
All inequality measures are estimated by Monte Carlo simulation using samples of size N = 106.
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Table A4: Absolute error in the estimation of inequality measures by OMD using five income
shares

Inequality measure Absolute difference GB2 Beta 2 Singh-Maddala Dagum Lognormal

Mean 0.0016 0.0023 0.0031 0.0061 0.0057

[0, 0.01) 98.56% 98.56% 92.42% 82.91% 86.33%

Gini [0.01, 0.02) 1.44% 0.36% 4.33% 9.09% 11.87%

Index [0.02, 0.05) 0% 1.08% 2.89% 8.00% 1.80%

[0.05, 0.1) 0% 0% 0.36% 0% 0%

[0.1, ) 0% 0% 0% 0% 0%

Mean 0.0031 0.0043 0.0048 0.0067 0.0043

[0, 0.01) 96.40% 97.12% 88.45% 81.82% 94.24%

Atkinson [0.01, 0.02) 2.88% 1.80% 7.22% 6.91% 5.04%

index (ε = 0.5) [0.02, 0.05) 0.72% 0.72% 3.61% 10.91% 0.72%

[0.05, 0.1) 0% 0.36% 0.72% 0.36% 0%

[0.1, ) 0% 0% 0% 0% 0%

Mean 0.0058 0.0086 0.0073 0.0084 0.0089

[0, 0.01) 84.53% 64.39% 80.14% 74.18% 63.67%

Atkinson [0.01, 0.02) 15.11% 32.73% 14.08% 13.45% 34.53%

index (ε = 1) [0.02, 0.05) 0.36% 2.88% 5.05% 12.36% 1.80%

[0.05, 0.1) 0% 0% 0.72% 0% 0%

[0.1, ) 0% 0% 0% 0% 0%

Mean 0.0168 0.0214 0.0165 0.0158 0.0248

[0, 0.01) 42.81% 23.02% 40.43% 40.73% 15.47%

Atkinson [0.01, 0.02) 23.02% 30.58% 26.35% 30.55% 30.22%

index (ε = 1.5) [0.02, 0.05) 32.37% 41.73% 29.60% 24.73% 48.20%

[0.05, 0.1) 1.8% 4.68% 3.61% 4% 6.12%

[0.1, ) 0% 0% 0% 0% 0%

Note: Results based on 278 datasets from the LIS database. Parametric models are estimated by OMD.
All inequality measures are estimated by Monte Carlo simulation using samples of size N = 106.
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Appendix B: The GB2group package

We have implemented the estimation of the GB2 distribution and some of its particular

and limit cases, including the Dagum, the beta 2 and the Singh-Maddala distributions, in

a user-friendly R package. The package is publicly available from the Comprehensive R

Archive Network, so it can be directly dowloaded into R. The GB2group package deploys two

different econometric strategies to estimate these parametric distributions, equally-weighted

minimum distance estimators (EWMD) and optimal minimum distance estimators (OMD).

The estimation by EWMD is performed with minimum data requirements: only five in-

come shares and the Gini index are needed to obtain parameter estimates. For the OMD

estimation, an estimate of per capita income is also required. The functions for estimating

distributions with more than two parameters allow the user to define the grid to be used

as initial values in the second step of our estimation procedure. By default, a sequence of

integer numbers from 1 to 20 is used (see Section 2.2).

If specified, standard errors of the parameters are also provided. Asymptotic standard errors

are reported for the OMD estimates. Using results from Hajargasht and Griffiths (2016),

the asymptotic covariance matrix of the estimator of θ in Eq. (10) is defined as,

var(θ̂) ≈ 1

N

(
∂L(uj;θ)′

∂θ
Ω−1

∂L(uj;θ)

∂θ

)−1
,

where Ω is given in Eq.(11) and L(uj;θ) is the theoretical Lorenz curve evaluated at uj.

Standard errors for the OMD estimates of the parameters are given by the square root of

the elements in the diagonal of the matrix above. Standard errors of EWMD estimates are

computed by Monte Carlo simulation, being possible to choose the number of repetitions.

The main limitation to obtain estimates of the standard errors is that the available data do

not often include information about the size of the sample (N).

As goodness-of-fit measures, the estimation functions in the package report the residual sum

of squares for EWMD, defined as:

RSS = M(θ̂)′M (θ̂),

where M (θ̂) is the vector with moment conditions defined in Eq. (9).

For OMD estimates, the weighted residual sum of squares is reported:

WRSS = M (θ̂)′Ω̂−1M (θ̂).

OMD and EWMD estimates of the Gini index are also reported to be compared with its
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survey value. The package also includes functions to create goodness-of-fit plots which

represent survey income shares and the theoretical Lorenz curve of the fitted model.
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