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The barycenter of the distribution 

and its application to the measurement of inequality: 

The Balance of Inequality, the Gini index, and the Lorenz curve 
 

ABSTRACT 
This paper introduces in statistics the notion of the barycenter of the distribution of a non-negative random 

variable Y with a positive finite mean µY and the quantile function Q(x). The barycenter is denoted by µX and 

defined as the expected value of the random variable X having the probability density function fX(x) = Q(x)/µY. 

For continuous populations, the Gini index is 2µX − 1, i.e., the normalization of the barycenter, which is in 

the range [0, 1/2], the concentration area is µX − 1/2, and the Gini’s mean difference is 4µY (µX − 1/2). The 

same barycenter-based formulae hold for normalized discrete populations. The introduction of the barycenter 

allows for new economic, geometrical, physical, and statistical interpretations of these measures.  

For income distributions, the barycenter represents the expected recipient of one unit of income, as if the 

stochastic process that leads to the distribution of the total income among the population was observable as it 

unfolds. The barycenter splits the population into two groups, which can be considered as “the winners” and 

“the losers” in the income distribution, or “the rich” and “the poor”. 

We provide examples of application to thirty theoretical distributions and an empirical application with the 

estimation of personal income inequality in Luxembourg Income Study Database’s countries. 

We conclude that the barycenter is a new measure of the location or central tendency of distributions, which 

may have wide applications in both economics and statistics. 
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INTRODUCTION 
Traditionally, the study of the distribution of a random variable of interest, Y 1, in a given population has 

been done, both theoretically and empirically, using two different but related approaches. The first approach, 

which we label as the Y-perspective, has been to study at first the frequency, i.e., the probability mass or density 

function, fY(y), and then also the cumulative distribution function, FY(y), of the variable of interest (Burr, 1942). 

The second approach, which we label as the X-perspective, has been to study what is now known as the quantile 

function, Q(x) = FY
-1(x),2 and the Lorenz curve (Lorenz, 1905). One of the most widely used applications of 

this approach, in particular concerning the distribution of income and wealth, is of course the Gini index (Gini, 

1914, 2005). 

In this article, we propose that these two approaches can be unified, enabling a greater understanding of the 

statistical analysis and many advancements, both theoretical and empirical, in particular concerning the 

measurement of inequality. 

In more detail, assuming a non-negative variable of interest Y, e.g., income, with a positive finite mean, µY, 

we propose to complete the X-perspective by introducing a second random variable, denoted by X, having the 

probability density function fX(x) = Q(x)/µY, and the cumulative distribution function, FX(x), obtained 

integrating fX(x). With this addition, the distribution is associated with five characteristic functions: two, i.e., 

fY(y) and FY(y), related to the Y-perspective, and three, i.e., Q(x), fX(x), and FX(x), related to the X-perspective. 

Furthermore, we show that the Lorenz curve corresponds with the portion of the graph of FX(x) in the range 

0 1x≤ ≤ . 

Since two density functions are now associated with the same distribution, i.e., fY(y) and fX(x), it is 

immediate to recognize the existence of two expectations. The first expected value is the mean of the 

distribution, µY = E[Y], and we denote the second expectation as the barycenter of the distribution, µX = E[X].3 

We show that there is no general relation between the mean and the barycenter, i.e., when there is a relation 

between them it is distribution-specific. Therefore, the barycenter is a new measure of central tendency or 

location, which adds to the mean, median, and mode. 

                                                 
1 Note that we use Y for the variable of interest instead of the X commonly used in statistics. The reason for this choice is 
that the quantile function is the most important characteristic function in our paper, and it has the variable of interest on 
the y-axis. This same convention was used for example by Pietra (1915, 2014) and Nygård & Sandström (1981). The 
convention prevalent today in statistics, but not in econometrics, of denoting by X the variable of interest is probably due 
to the prevalence of the approach based on the probability mass or density function and cumulative distribution function 
which have the variable of interest on the x-axis. 
2 Indeed, whenever a scholar considered “n ordered quantities representing the value of a given variable observed on n 
units” (e.g., Pietra, 1915, 2014, p. 6), he was actually considering the (empirical) quantile function. 
3 Center of mass, center of gravity, and barycenter are synonyms (e.g., https://www.merriam-
webster.com/dictionary/barycenter). We denote the expected value of X as barycenter to emphasize the physical analogy 
resulting from the fact that, by definition, the expectation of a random variable is the center of mass of its probability 
mass/density function (e. g., Bulmer, 1979, p. 52; Mood et al., 1974, p. 65). Unlike other languages in which it is widely 
used, the term barycenter is rare in the common use of the English language and can be easily associated with a new 
measure. It is a concise term of Greek derivation that recalls that the concept of center of mass was introduced by 
Archimedes (Archimedes, Eutocios, & Heiberg, 1881; Archimedes & Heath, 1897a) as “κέντρον τοῦ βάρεος” (kéntron 
tu báreos) (Archimedes & Heath, 1897b, p. 181), i.e., center of weight. 
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The introduction of the barycenter is particularly important for the measurement of inequality. For income 

distributions, i.e., when Y is income, whereas the mean is the expected income, assuming to extract it at random 

from the distribution, the barycenter is the expected income recipient, assuming to assign at random, according 

to the distribution, one unit of income to the individuals in the population sorted in non-decreasing order of 

income. 

Thus, whereas the Y-perspective focuses on the outcome of the data generating process, e.g., the income 

earned over a year, the X-perspective focuses on the stochastic process itself, i.e., the distribution of income as 

it unfolds, as if it was observable.4 These two perspectives, and the five functions they comprise, are different 

but complementary ways of looking at the same distribution. Depending on the problem to be addressed, one 

or the other function may be more useful to analyze the same stochastic process. 

We consider both continuous and discrete populations and we identify the normalized x-scale as the plotting 

position that allows us to apply to discrete populations the same barycenter-based formulae valid for 

continuous populations. 

For continuous and normalized discrete populations, the barycenter assumes values between 1/2, in the case 

of perfect equality, when it coincides with the location of the median of the distribution, and 1, in the case of 

perfect inequality. The importance of the barycenter is highlighted by the following results. First, the Gini 

index is 2µX − 1, i.e., it is the normalization of the barycenter. Second, the concentration area between the 

egalitarian line and the Lorenz curve is µX − 1/2. Third, the Gini’s mean difference is 4µY (µX − 1/2). Thus, 

whereas the Gini index is a function of the barycenter of the distribution only, the Gini’s mean difference is a 

function of both the barycenter and the mean of the distribution.5 

By introducing the barycenter of the distribution, we are also able to associate the Gini index, the Gini’s 

mean difference, and the concentration area with new graphical representations, which combine new 

geometrical and physical interpretations, in addition to the geometrical interpretation of the Gini index 

associated with the Lorenz curve. In particular, since it is based on the idea of weighing the income distribution, 

i.e., Q(x), using the barycenter as the indicator of its inequality, the Balance of Inequality provides a physical 

interpretation and geometrical representation of the Gini index that can be more easily understood by the 

general public. 

We illustrate the proposed methodology and the properties of the barycenter by providing examples of 

application to thirty theoretical distributions. In particular, for each distribution, we obtain Q(x), fX(x), µX, and 

the Balance of Inequality (=Gini) index. We also provide an empirical application by estimating personal 

income inequality in the countries in the Luxembourg Income Study (LIS) Database. 

                                                 
4 Champernowne (1953) assumed the distribution of incomes between an enumerable infinity of income ranges as 
developing by means of a stochastic process. Instead, we propose to consider the final distribution of income as the result 
of a stochastic process that assigns the total income to the individuals in the population one unit at a time. In the X-
perspective, the focus is shifted from the incomes to the income recipients. 
5 This result also explains why the variance of Y and the Gini’s mean difference are distribution-specific functions of each 
other, i.e., there is no general relation between them (Jasso, 1979; van der Vaart, 1968). 
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We conclude that the barycenter is a new measure of the location or central tendency of distributions, which 

may have wide applications in both economics and statistics. 

The paper is organized as follows. Section 1 provides some preliminary definitions and concepts. We recall 

the Gini’s concentration ratio R and mean difference, and their relation with the Lorenz curve, and the concept 

of center of mass and its relation with the expected value of a random variable. Section 2 introduces the notion 

of the barycenter of the distribution, for both continuous and discrete populations, the normalized x-scale, 

and the normalized Lorenz curve for discrete populations. Section 3 introduces the Balance of Inequality 
(=Gini) index. Section 4 contains the application of the proposed methodology to thirty theoretical 

distributions. Section 5 shows the relation between the barycenter and the Gini’s mean difference. Section 6 

proposes new interpretations for the Gini index and clarifies or motivates in a new way some of its 

properties based on the barycenter of the distribution. Section 7 provides two estimators of the population’s 

barycenter and Balance of Inequality (=Gini) index, one for a random sample from the population and one 

for weighted observations. Section 8 contains an empirical application with the estimation of personal 

income inequality in LIS countries. Finally, Section 9 discusses the main results obtained and concludes. 

1. PRELIMINARY DEFINITIONS AND NOTIONS
This section provides some preliminary definitions and concepts that we use throughout the paper. First, 

we define the variable of interest and the two cases of continuous and discrete populations. Second, we recall 

the Gini index and the Gini’s mean difference, and their relationship with the Lorenz curve. Third, we recall 

the concept of the center of mass and its relationship with the expected value of a random variable. 

1.1 CONTINUOS POPULATIONS 
Let a population be a set of two or more individuals.6 We assume that the variable of interest, Y, is a non-

negative (discrete or) continuous random variable representing a quantitative characteristic of the individuals 

in a given population, e.g., income. 7 We also assume that the total value of Y for the population, yT, is positive. 

Let fY(y) and FY(y) denote the probability density function and the cumulative distribution function of Y, 

respectively. 

Let Q(x) denote the quantile function of Y, which can be defined directly (e.g., the Tukey Lambda 

distribution) or, in the case of continuous populations, obtained in closed form or numerically as the inverse 

of FY(y). We also assume that Q(x) = 0 for x ∉ [0,1]. 

We define a population as continuous when it has an infinite number of people, and we assume that the 

population is normalized so that it is represented by the argument of Q(x) in the range [0,1]. Because Q(x) is a 

non-decreasing function, i.e., Q(x+dx) ≥ Q(x), the population is implicitly assumed to be sorted in the non-

decreasing value of the variable of interest. 

6 An individual alone is not a population. 
7 The assumption that the random variable Y be continuous is not essential, and the analysis can simply be extended to 
the case of a discrete variable. The case of a non-positive variable is analogous to the case of a non-negative variable 
since it can be dealt with by changing the sign of the variable. 
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For income distributions, i.e., when Y is income, the value x = FY(y) is the probability of observing an 

income below y = Q(x) and represents the share of the population with an income less than or equal to y 

(Gastwirth, 1971, p. 1037). Therefore, y = Q(x) is the value of income such that the probability of observing 

an income less than or equal to y is x, i.e., FY(y) = Pr (Y ≤ y) = x, and represents the income of an individual at 

the xth percentile of the distribution (Mehran, 1976, p. 805), i.e., the income of an individual at x. Thus, each 

value of x in the range [0,1] represents both the x fraction of the population with an income below y = Q(x) 

and the position of an individual in the population sorted in non-decreasing order of income that receives that 

income y.8 

1.2 DISCRETE POPULATIONS 
Let's define a population as discrete when it has a finite number n ≥ 2 of people. Let assume that the 

individuals in the population are sorted in non-decreasing order of size of the variable of interest Y, and let yi 

denote the value of Y for an individual with rank i in the population, 1,...,i n= , so that y1 denotes the minimum 

value and yn the maximum value of Y in the population. 

For discrete populations, the specification of the quantile function, i.e., yi = Q(xi), is possible only after 

solving the problem of defining the position xi to be assigned on the x-axis to an individual having rank i in the 

population.9 We deal with this issue in Section 2.2. 

1.3 THE GINI INDEX, THE GINI’S MEAN DIFFERENCE, AND THE LORENZ CURVE 
The Gini index is widely used in statistics and social sciences. However, the same name, Gini index or Gini 

coefficient, is used in the literature with different meanings. In this article, by Gini index we always and only 

refer to the concentration ratio R introduced by Corrado Gini in 1914 (Gini, 1914, 2005)10, two years after 

introducing the mean difference (Gini, 1912), ∆, which we refer to as the Gini’s mean difference. 

Let's consider the case of a discrete population. Let pi denote the cumulative share of the population 

including the first i individuals, defined by 

(1) i
ip
n

≡  

Let qi denote the cumulative share of the total value of the variable of interest of the first i individuals, 

defined by 

                                                 
8 For the inverse probability integral transform, given a continuous uniform variable X in [0,1] and an invertible 
cumulative distribution function FY, the random variable Y = FY -1(X) has distribution FY (Devroye, 1986). Note that we 
do not define the random variable X as a continuous uniform variable in [0,1]. 
9 Note that we do not adopt the widely used definition of the quantile function proposed by Gastwirth (1971), i.e., 

{ }1( ) inf : ( )Y YF x y R F y x− = ∈ ≥ , because for continuous populations it agrees with the usual definition of the inverse 
function and for discrete populations it imposes a particular specification of the quantile function that disagrees with the 
analysis conducted in this study. 
10 Unfortunately, this article remained largely unknown for ninety years - as evidenced by the disconcerting absence of 
citations to it (and to the other Gini’s publications) even in very influential studies on the Gini index (e.g., Atkinson, 1970; 
Dasgupta, Sen, & Starrett, 1973; Rothschild & Stiglitz, 1973) - up to its meritorious translation into English (Giorgi, 
2005). It could be said that the literature on the Gini index has developed behind a veil of ignorance (e.g., Giorgi, 2014). 
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(2) 1 1

1

i i

k kk k
i n

Ti i

y y
q

yy
= =

=

≡ =
∑ ∑
∑

 

Gini defined the concentration ratio R (Gini, 1914, p. 1207, eq. 11, 2005, p. 6, eq. 11) by 

(3) 
1

1
1

1

( )n
i ii

n
ii

p q
R

p

−

=
−

=

−
≡ ∑

∑
. 

After some manipulations, he also gave two equivalent expressions for the concentration ratio R, the first 

(Gini, 1914, p. 1208, eq. 12, 2005, p. 7, eq. 12) is 

(4) 
1

1

21
( 1)

n
ii

T

R q
n y

−

=
= −

− ∑ , 

and the second (Gini, 1914, p. 1208, eq. 12 bis, 2005, p. 7, eq. 13) is 

(5) 1
2 ( 1)

1
( 1)

n
ii

T

i y
R

n y
=

−
= −

−
∑ . 

In the same article, Gini derived the following relationship between the concentration ratio R and the mean 

difference (Gini, 1914, p. 1239, 2005, p. 30) 

(6) 
2 Y

R
µ
∆

= , 

where µY is the arithmetic mean, and the Gini’s mean difference is defined (Gini, 1912, p. 36, eq. 28) by 

(7) 
1 1

1
( 1)

n n

i k
k i

y y
n n = =

∆ = −
− ∑∑  

Finally, always in the same article, Gini also indicated the possible association between the concentration 

ratio R and the Lorenz curve, i.e., the curve connecting the points {(0,0),..., ( , ),..., (1,1)}i ip q . He noted, albeit 

in a contradictory way (Gini, 1914, pp. 1231–1233, 2005, pp. 24–25), that the concentration ratio R is the limit 

to which the ratio between the area limited by the Lorenz curve and the egalitarian line (concentration area) 

and the area of the triangle below the egalitarian line, which represents the concentration area in the case of 

maximum concentration, tends, “when the number n of observed cases increases but their distribution remains 

the same”.11 

Soon afterward, Gaetano Pietra (1915, 2014, p. 8, eq. 12) defined the Gini’s concentration ratio R from the 

Lorenz curve in the case of continuous populations, i.e., “when the number of observations is very large” 

(Pietra, 2014, p. 8) 

(8) 
( )

( )
1

10
0

1/ 2
1 2

2 1/ 2Y

L x dx
R L x dx

µ

−∆
= = = −∫

∫  

                                                 
11 Our translation, which we believe to be more accurate than “when the number n of cases increases and the distribution 
of the character is unchanged” (Gini, 2005, p. 24), of the sentence in Italian “quando cresce il numero n dei casi osservati, 
mantenendosi però uguale la loro distribuzione” (Gini, 1914, p. 1231). 
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Thus, denoting by L the area under the Lorenz curve, and by C the concentration area, i.e., the area limited 

by the Lorenz curve and the egalitarian line, for continuous populations, the concentration ratio R is 

(9) 1 2 2R L C= − =  

Note that for both continuous and discrete populations, the concentration ratio R is normalized, i.e., the 

minimum possible value of concentration is 0 and the maximum possible value is 1, i.e., 0 ≤ R ≤ 1. This is not 

true for the pseudo-Gini index that is also widely used in the literature on income inequality, which, for discrete 

populations, is G = R (n − 1)/n.12 

In conclusion, it is important to note that Gini did not define his concentration ratio R based on the Lorenz 

curve and that, in the case of discrete populations, the association between the Gini index and the Lorenz curve 

is problematic. We propose in Section 2.4 that the solution to this problem is the use of the normalized x-scale. 

1.4 THE CENTER OF MASS IN PHYSICS AND STATISTICS: THE EXPECTED VALUE 
The center of mass (or center of gravity or barycenter) is one of the most fundamental concepts of physics 

and particularly of classical mechanics. It is also an important concept in statistics, as it is well-known that the 

expectation of a random variable is the center of mass of its probability mass or density function (e. g., Bulmer, 

1979, p. 52; Mood, Graybill, & Boes, 1974, p. 65). However, because the denominator is unitary, the formulae 

of the expected value reported in statistics manuals are simplified, and for our purposes, it is convenient to 

make them explicit starting from the definition of the center of mass used in physics. 

Consider a system with n particles, each with a given mass, 0im ≥ , 1,...,i n= , whose position vectors are, 

respectively, r1, r2,…, rn. The center of mass of the system is defined (Finzi, 1991, pp. 256–268; Fowles & 

Cassiday, 2005, pp. 275–276; MacMahon, 2007, pp. 73–78; Vivarelli, 1992, pp. 94–98) as the point whose 

position vector rCM is  

(10) 1

1

n
i ii

CM n
ii

m

m
=

=

= ∑
∑

r
r  

On the x-axis of a Cartesian coordinate system, the position of the center of mass of the system, xCM, is 

(11) 1

1

n
i ii

CM n
ii

m x
x

m
=

=

= ∑
∑

 

Turning to statistics, let X be a discrete random variable with distinct values , 1,...,jx j m= , and probability 

mass function ( ) [ ]X j jf x P X x= = . Let fX(xj) denote the mass associated with the mass point xj (e.g., Mood et 

al., 1974, p. 58). Then, the center of mass of fX(xj) is the expected value of X 

                                                 
12 The origins of the pseudo-Gini index can be traced back to the very influential manual written by Kendall (1945, p. 43 
eq. 2.25), who failed to mention that (6), i.e., the relation between the concentration ratio R and the mean difference, holds 
only when the simple mean difference, i.e., (7), is used. It is truly unfair to Gini that many criticisms of his index are 
actually directed at this pseudo-Gini index. 
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(12) [ ]1
1

1

( )
( )

( )

m
X j j mj

CM X j jm j
X jj

f x x
x f x x E X

f x
=

=

=

= = =
∑

∑
∑

 

Replacing the probability mass function with the relative frequency or probability of each distinct value, 

nj/n, you can also show that the center of mass of fX(xj) is the arithmetic mean of the values assumed by X 

(13) 1 1
1

1 1

( ) / 1
( ) /

m m
X j j j j nj j

CM im m i
X j jj j

f x x n x n
x x

nf x n n
= =

=

= =

= = =
∑ ∑

∑
∑ ∑

 

In the case of a continuous random variable X with probability density function fX(x), you can show that the 

center of mass of fX(x) is the expected value of X by integrating the (mass) density 

(14) [ ]
( )

( )
( )

X
CM X

X

f x xdx
x f x xdx E X

f x dx

∞

∞
−∞
∞ −∞

−∞

= = =∫
∫

∫
 

Finally, the center of mass of a generic function f(x) is 

(15) 
( )

( )
CM

f x xdx
x

f x dx

∞

−∞
∞

−∞

= ∫
∫

 

To represent this physical analogy, in the figures we indicate a thick line under the function of interest as if 

this function was loading on a thin beam supported by a fulcrum. A triangle below the line represents the center 

of mass, i.e., the fulcrum in the point at which the beam balances.13 For instance, this graphical representation 

is applied to indicate the mean of the distribution of Y, i.e., the center of mass of fY(y), in Figure 2-4 Panel 1. 

 

2. THE BARYCENTER OF THE DISTRIBUTION 
This section introduces the random variable X associated with the non-negative random variable of interest 

Y and the notion of the barycenter of the distribution of Y, which is defined as the expected value of X. We also 

derive the relationship between the barycenter, the area of concentration, and the Gini index, and we propose 

new geometrical representations for the latter two measures and a physical interpretation for the barycenter. 

First, we consider the case of continuous populations and then the case of discrete populations, after having 

introduced the x-scales and in particular the normalized x-scale, which allows us to establish a correspondence 

between continuous and discrete populations. Finally, we also define in this section three new measures that 

are useful to characterize a distribution: the location of the mean, the barycentric value, and the barycentric 

share. 

2.1 CONTINUOUS POPULATIONS 
In this section, we introduce the random variable X associated with the non-negative random variable of 

interest Y by defining its probability density function as the quantile function of Y divided by its mean. This 

                                                 
13 Montgomery and Runger (2014, p. 74) used a similar graphical representation. 
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definition is the first key point of this section, and it allows us to define the cumulative distribution function, 

the expected value, and the variance of X by applying the standard definitions (e.g., Mood et al., 1974). The 

second key point of this section is the definition of the barycenter of the distribution of Y as the expected value 

of X. We also derive the relationship between the barycenter, the area of concentration, and the Gini index, 

and propose new geometrical representations for the latter two quantities. Finally, we define three new 

measures that are useful to characterize a distribution: the location of the mean, the barycentric value, and the 

barycentric share. 

Before introducing the new definitions, we recall the standard definition of the mean of the distribution 

(e.g., Mood et al., 1974). The mean, µY, or expectation of Y is: 

(16) [ ]
0

0
[ ] ( ) 1 ( ) ( )Y Y Y YE Y f y ydy F y dy F y dyµ

∞ ∞

−∞ −∞
= = = − −∫ ∫ ∫  

Because we assumed Y to be non-negative, the mean is also given by the following simplified expressions 

(17) [ ]
0 0

[ ] ( ) 1 ( )Y Y YE Y f y ydy F y dyµ
∞ ∞

= = = −∫ ∫  

Note that the mean can also be obtained from the quantile function by 

(18) 
1

0
( )Y Q x dxµ = ∫  

Now, we introduce the random variable X by defining its probability density function.  

Definition 1 – The random variable X and its probability density function, fX(x) 

Let Y be a non-negative continuous random variable having a positive finite mean, µY, and the quantile 

function Q(x). Then, X is defined as the random variable having the probability density function denoted by 

fX(x) and defined by 

(19) 1

0

( ) ( )( )
( )

X
Y

Q x Q xf x
Q x dx µ

≡ =
∫

   ♦ 

Note that fX(x) fulfills the two necessary conditions for a probability density function (e.g., Mood et al., 

1974), namely 

(20) 
)    ( ) 0,

)  ( ) 1

X

X

i f x x R

ii f x dx
∞

−∞

≥ ∀ ∈

=∫
, 

and therefore it is a legitimate probability density function. The first condition is fulfilled because Y is assumed 

to be a non-negative continuous random variable having a positive finite mean. Indeed, this assumption is 

necessary to define fX(x) from the quantile function. The second condition is fulfilled because fX(x) is obtained 

by dividing Q(x) by its integral. Furthermore, ( ) 0 for [0,1]Q x x= ∉  implies ( ) 0 for [0,1]Xf x x= ∉ . 

The distribution of X is associated with the distribution of Y in such a way that the two random variables 

describe the same stochastic process from two different but related perspectives. For income distributions, Y 

is the income, assuming to extract it at random from its distribution, and X is the income recipient, assuming 

to assign at random, according to the distribution of X, a unit of income to the individuals in the population. 

Thus, whereas the Y-perspective focuses on the outcome of the data generating process, e.g., the income earned 
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over a year, the X-perspective focuses on the stochastic process itself, i.e., the income distribution as it unfolds, 

as if it was observable. 

Definition 2 – The cumulative distribution function of X, FX(x) 

The cumulative distribution function of X is denoted by FX(x) and defined by 

(21) ( ) ( )
x

X XF x f t dt
−∞

≡ ∫    ♦ 

Because ( ) 0 for [0,1]Xf x x= ∉ , ( ) 0 for 0XF x x= ≤  and ( ) 1 for 1XF x x= ≥ . 

For income distributions, FX(x) = Pr (X ≤ x) is the probability that a unit of income be assigned to an 

individual at a position in the range [0, x] and it represents the share of total income by the xth fraction of the 

population with the lowest incomes. Thus, FX(x) also has the same interpretation of the Lorenz curve. 

Proposition 1 – The Lorenz curve is the portion of the graph of FX(x) in the range x ∈ [0,1].   ♦ 

Proof. Applying the usual definition of the Lorenz curve in terms of the quantile function, i.e., as the inverse 

of the cumulative distribution function of Y (Gastwirth, 1971), Definition 1, and Definition 2, we obtain14 

(22) 
0 0

1( ) ( ) ( ) ( ),  for 0 1
x x

X X
Y

L x Q t dt f t dt F x x
µ

= = = ≤ ≤∫ ∫    � 

Now, using the standard definition of the expected value (e.g., Mood et al., 1974), we introduce the second 

key definition of this section. 

Definition 3 – The expected value of X: The barycenter of the distribution of Y 

The barycenter of the distribution of Y is defined as the expectation of X. It is denoted by µX and defined by 

(23) [ ] [ ]
0

0

1 ( ) ( ) 1 ( ) ( )X X X X
Y

E X Q x xdx f x xdx F x dx F x dxµ
µ

∞ ∞ ∞

−∞ −∞ −∞
≡ = = = − −∫ ∫ ∫ ∫    ♦ 

Because ( ) 0 for [0,1]Q x x= ∉  the barycenter is also given by the following simplified expressions 

(24) 1 1 1

0 0 0

1 ( ) ( ) 1 ( )X X X
Y

Q x xdx f x xdx F x dxµ
µ

= = = −∫ ∫ ∫  

For income distributions, i.e., when Y is income, whereas the mean is the expected value of income, 

assuming to extract it at random from the distribution of Y, the barycenter is the expected income recipient, 

assuming to assign at random, according to the distribution of X, a unit of income to the individuals in the 

population sorted in the non-decreasing probability of receiving that income. 

Proposition 2 – The barycenter of the distribution, µX, is the center of mass of the quantile function, 

Q(x), and probability density function of X, fX(x).   ♦ 

Proof. Implied by (15) and (24).   � 

In the figures, we represent this physical interpretation of the barycenter by indicating a thick line under 

the function of interest, i.e., Q(x) or fX(x), as if this function was loading on a thin beam supported by a fulcrum. 

The triangle below the line represents the barycenter, i.e., the fulcrum in the point at which the beam balances 

(Figure 1 Panel 1-2, Figure 2-4 Panel 3-4). 

                                                 
14 In a sense, we clarify and extend the intuition of Aaberge (2000, p. 641), which noted that “the Lorenz curve can be 
considered analogous to a cumulative distribution function”. 
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Proposition 3 – The concentration area is equal to µX – 1/2.   ♦ 

Proof. Denoting by L the area under the Lorenz curve, i.e., the area under the graph of FX(x) in the range  

x ∈ [0,1], and by C the concentration area, i.e., the area limited by the Lorenz curve and the egalitarian line 

f(x) = x, and using (24), the barycenter is 

(25) 1 1/ 2X L Cµ = − = + , 

whence 

(26) 1/ 2XC µ= − .   � 

Using this relationship between the concentration area and the barycenter, we obtain a new geometrical 

representation of the concentration area, the extreme values of the barycenter, the relationship between the 

Gini index and the barycenter, and a new geometrical representation of the Gini index. 

Proposition 4 – Geometrical representation of the concentration area. 

The concentration area is equal to the area of the rectangle drawn in the plane of FX(x) with base µX – 1/2 

and unit height (Figure 1 Panel 4).   ♦ 

Proposition 5 – The barycenter of the distribution, µX, is in the range [1/2, 1]. 

(27) 1/ 2 1Median X Maxx xµ= ≤ ≤ = .   ♦ 

Proof. Using (25), whereas, in the case of perfect equality, the concentration area is null and µX = 0, in the case 

of perfect inequality, the concentration area is 1/2 and µX = 1.   � 

Proposition 6 – The Gini index is equal to 2µX – 1. 

(28) 2 1XR µ= − .   ♦ 

Proof. Implied by the relationship between the Gini index and the concentration area (8), i.e., R = 2C, and (26).   

� 

Proposition 7 – Geometrical representation of the Gini index. 

The Gini index is equal to the area of the rectangle drawn in the plane of FX(x) with base 2 (µX – 1/2) and 

unit height.   ♦ 

After introducing the expected value of X, we now introduce its variance by applying the standard 

definitions  (e.g., Mood et al., 1974). 

Definition 4 – The variance of X 

The variance of X is denoted by Var[X] and defined by 

(29) ( )2 2 2[ ] ( ) ( )X X X XVar X x f x dx f x x dxµ µ
∞ ∞

−∞ −∞
≡ − = −∫ ∫    ♦ 

Because Q(x) = 0 for x ∉ [0,1], the variance of X is also given by the following simplified expression 

(30) 
1 2 2

0
[ ] ( )X XVar X f x x dx µ= −∫  

The variance of X can also be derived from the cumulative distribution function FX(x), 

(31) [ ] 2

0
[ ] 2 1 ( ) ( )X X XVar X x F x F x dx µ

∞
= − + − −∫ , 
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however, this derivation is often much more complicated or even impossible analytically, as it is the use of the 

moment generating function, which is therefore not considered here. 

We introduce now three new measures that are useful to characterize a distribution: the location of the 

mean, the barycentric value, and the barycentric share. 

Definition 5 – The location of the mean, xM 

The location of the mean of the distribution of Y is denoted by xM and defined as the value of the cumulative 

distribution function of Y, FY(x), at the mean by 

(32) ( )M Y Yx F µ≡    ♦ 

Definition 6 – The barycentric value, yB 

The barycentric value of the distribution of Y is denoted by yB and defined as the value of the quantile 

function, Q(x), at the barycenter by 

(33) ( )B Xy Q µ≡    ♦ 

Definition 7 – The barycentric share, sB 

The barycentric share of the distribution of Y is denoted by sB and defined as the value of the cumulative 

distribution of X, FX(x), at the barycenter by 

(34) ( )B X Xs F µ≡    ♦ 

For income distributions, the location of the mean, xM, represents the position on the x-axis of Q(x), fX(x), 

and FX(x) of an individual in the population receiving the mean income and the barycentric value, yB, represents 

the income of the expected income recipient. Note that in general, the barycentric income is different from the 

mean income (see Section 4). Finally, the barycentric share, sB, represents the share of total income received 

by the µXth fraction of the population with the lowest incomes, i.e., by individuals on the left of the barycenter. 

These three measures, with the mean and the barycenter, identify four points of interest on the characteristic 

curves of a distribution: the point (µY, xM) on the graph of FY(y), the points (xM, µY) and (µX, yB) on the plot of 

Q(x), and the point (µX, sB) on the graph of FX(x). 

Table 1 Column 2 summarizes the main formulae introduced in this section. Figure 2, Figure 3, and Figure 

4 show the application of the methodology introduced in this section to the Uniform, Exponential, and Weibull 

distributions, respectively. Section 4 contains a broader application to 30 theoretical distributions. 

 

Table 1, Figure 1, 2, 3, and 4. 

 

2.2 X-SCALES FOR DISCRETE POPULATIONS: THE NORMALIZED X-SCALE 
To apply to discrete populations the same approach introduced for continuous populations, it is necessary 

to solve a preliminary problem. Because this approach is based on the use of the quantile function, the problem 

is defining the position xi to be assigned on the x-axis to an individual with rank i in the population so that the 

quantile function, i.e., ( )i iy Q x= , can be specified. 
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Whereas this issue is usually overlooked in the literature on inequality measurement, i.e., a solution is 

implicitly or explicitly applied without discussion, it has been studied in statistics as the problem of defining 

the plotting position in quantile plots and probability papers, and many plotting positions have been proposed 

(e.g., Gumbel, 1954, pp. 13–15; Hyndman & Fan, 1996; Leon Harter, 1984). 15 The plotting position should 

be chosen according to the problem to be addressed, bearing in mind that it imposes a constraint on the 

definition of the quantile function (Hyndman & Fan, 1996). 

We define an x-scale as a real-valued non-negative strictly increasing function that assigns to an individual 

with rank i in the population the position -scal (e )ix x i=  on the x-axis of the orthogonal plane [ , ( )]x f x . 

We aim to study how the x-scales commonly used in the literature on income inequality affect the measures 

that we have introduced for continuous populations, in particular the barycenter, and to identify the x-scale 

that allows us to apply the same barycenter-based formulae to both continuous and discrete populations. 

Therefore, we consider only the x-scales that place individuals at constant distances and we define four x-axis 

scales that are used in the literature on income inequality and are interesting for our purposes. The first is the 

natural x-scale, {1,..., ,..., }ix i n= , used in the Pen Parade (Pen, 1971), in which the position of each individual 

corresponds with her rank. The second is the Lorenz x-scale, {1 / ,..., / ,...,1}ix n i n= , commonly used to draw 

the Lorenz curve. The third is the normalized x-scale, {0,..., ( 1) / ( 1),...1}ix i n= − − , in which the positions are 

in the range [0,1]. Finally, the fourth x-scale is the shifted natural x-scale, in which the first individual is placed 

in the origin, {0,..., 1,..., 1}ix i n= − − .16 

Note that in the natural x-scale, whereas the median rank is (n + 1)/2 when n is even and it is n/2 when n is 

odd, the median location is xMedian = (n + 1)/2 for both even and odd n. Note also that in the Lorenz x-scale 

only, xi denotes both the location of an individual with rank i and the fraction of the population up to this 

location. Furthermore, in the natural and Lorenz x-scales, because no individual is in the origin, the function 

of the individual position that one may wish to study, i.e., y = f(x), must necessarily pass through the origin, 

i.e., it must be f(0) = 0. Except for the study of the Lorenz curve, which is commonly defined as including the 

point (0,0), this constraint can be a serious limitation.17 The shifted natural x-scale solves this problem by 

adjusting the natural x-scale to include the origin. Finally, note that the normalized x-scale is the one implicitly 

used by Gini (1914, 2005) (see Section 2.4). 

Table 2 shows the four x-scales defined, along with the median location and the constant distance between 

two adjacent individuals for each x-scale. 

 

Table 2. 

                                                 
15 For instance, Stigler (1974) considered the x-scale {1/ ( 1),..., / ( 1),..., / ( 1)}ix n i n n n= + + + , in which no individual is 
placed in the positions x = 0 and x = 1, a plotting position proposed by Weibull (1939) and Gumbel (1939). 
16 In statistics, the Lorenz x-scale is known as the “California method” (Leon Harter, 1984, p. 1616) and the normalized 
x-scale is known as the modal position (Gumbel, 1939). 
17 For instance, Milanovic (1997), studying a linear Pen Parade, was forced by the natural x-scale implicitly used to limit 
his analysis to the bundle of straight lines with a positive slope passing through the origin, i.e., he considered only the 
uniform income distributions having zero as lower bound. 
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The normalized x-scale has several properties that make it suitable to allow us to establish a correspondence 

between discrete and continuous populations. 

Proposition 8 – Normalized x-scale for discrete populations and continuous populations 

The normalized x-scale for discrete populations {0,..., ( 1) / ( 1),...1}ix i n= − −  corresponds with the 

normalized scale of continuous populations, [0,1]x∈ .   ♦ 

Proof. In both cases, an individual with the smallest value of the variable of interest is in x = 0 and one with 

the maximum value is in x = 1. For instance, consider a Uniform distribution U(a,b), whose quantile function 

is [0,1]( ) ( ) ( )Q x a bx I x= + . Then (0)Q a=  and 1)Q a b= +  for both discrete and continuous populations only 

when the normalized x-scale is used for discrete populations.   � 

Definition 8 – Normalized population 

We define a population as normalized when it is continuous in the range [0,1]x∈  or it is discrete and the 

normalized x-scale ( ) ( ){ }0,..., 1 / 1 ,...1ix i n= − −  is used.   ♦ 

Proposition 9 – Median location and maximum location for normalized populations, xMedian, xMax 

For normalized populations, the median location, xMedian, is  

(35) 1 / 2Medianx = ,  

and the maximum location, xMax, i.e., the location of one maximum value of the variable of interest, is 

(36) 1Maxx =    ♦ 

2.3 DISCRETE POPULATIONS 
This section extends the definitions introduced for continuous populations to discrete populations.18 We 

also define here the barycentric rank, which is a useful measure when discrete populations are considered. 

In the case of discrete populations, Y is a non-negative random variable with m distinct values yj,  

1,...,j m= , each one with a relative frequency /jn n  . The probability mass function of Y, fY(yj), is 

(37) ( ) [ ] / ,  1,...,Y j j jf y P Y y n n j m= = = = , 

and the cumulative distribution function of Y, fY(y), is 

(38) 
: 

( ) ( )
j

Y Y jj y y
F y f y

≤
=∑  

In the case of discrete populations, X is a discrete random variable with n distinct values -scal (e )ix x i= , 

1,...,i n= . The quantile function, Q(xi), is  

(39) ( )i iQ x y= , 

the probability mass function of X, fX(xi), is 

(40) 
1

( )( ) [ ] i i
X i i n

Yii

Q x yf x P X x
ny µ

=

= = = =
∑

, 

and the cumulative distribution function of X, FX(xi),  is 

                                                 
18 With the exception of the location of the mean. 
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(41) 
: 

( ) ( )
i

X X ii x x
F x f x

≤
=∑  

Note the important difference between (19) and (40). Whereas in the case of continuous populations, fX(x) 

is obtained by diving Q(x) by µY, in the case of discrete populations, fX(xi) is obtained by diving Q(xi) by nµY. 

The two definitions are equivalent but whereas, in the case of continuous populations, we obtain a density 

distribution, in the case of discrete populations, we obtain a mass distribution. 

Let fX(xi) denote the mass associated with the mass point xi. Then, the expected value of X, i.e., the 

barycenter of the distribution, xB, is 

(42) [ ] 1 1

1 1

( )

( )

n n
X i i i ii i

B n n
X i ii i

f x x y x
x E X

f x y
= =

= =

= = =∑ ∑
∑ ∑

 

For income distributions, [ ]iP X x=  denotes the probability or relative frequency with which an individual 

with rank i and position xi is selected for the allocation of one unit of the total income yT. The barycenter is the 

position on the x-axis of the expected income recipient. 

The barycenter is also the arithmetic mean of the yT values assumed by X 

(43) 1
1

1

( ) 1
( )

T

n
yX i ii

B jn j
TX ii

f x x
x x

yf x
=

=

=

= =∑ ∑
∑

 

Thus, for discrete populations, the barycenter’s value depends on the x-scale.19 However, the barycenter 

does not depend on the y-scale, as in the case of continuous populations. 

Proposition 10 – The barycenter of the distribution, xB, depends on the x-scale. 

Proof. Implied by (42).   � 

Proposition 11 – The barycenter of the distribution, xB, is y-scale independent. 

Proof. Implied by (42).   � 

Note that an implication of Proposition 11, which holds for both continuous and discrete populations, is 

that distributions with different means can be compared graphically by using the plot of both fX and FX. 

Table 2 shows the formulae for calculating the barycenter for each of the four x-scales introduced in Section 

2.2. 

Note that the normalized x-scale only allows us to establish a correspondence with the case of continuous 

populations. Indeed, the barycenter obtained for normalized discrete populations is the equivalent of the 

continuous populations’ barycenter. 

Definition 9 – Barycenter in the case of normalized discrete populations, µX 

For normalized discrete populations, the barycenter is denoted by µX and defined by 

(44) 
( )

( )
1

1

1

1

n
ii

X n
ii

i y

n y
µ =

=

−
≡

−
∑

∑
 

Therefore, we can extend Proposition 5 to both continuous and normalized discrete populations. 

                                                 
19 In the case of continuous populations, this is not a problem because the normalized scale is universally used. 
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Proposition 12 – For normalized populations, the barycenter, µX, is in the range [1/2, 1]. 

(45) 1/ 2 1Median X Maxx xµ= ≤ ≤ =    ♦ 

Proof. Implied by Proposition 5 for continuous populations. For discrete populations and perfect equality, i.e., 

when yi = a for all i, a being a positive scalar, the barycenter is 1/2. In the case of perfect inequality, i.e., when 

yi = 0 for i = 1, ..., n−1 and yn = a, the barycenter is 1.   � 

Like the barycenter, also the variance of X depends on the x-scale used, and it is 

(46) 
2

2 2 21

1

[ ] [ ] [ ] ( )
n

i ii
Bn

ii

x y
Var X E X E X x

y
=

=

= − = −∑
∑

 

Table 2 shows the formulae for calculating the variance of X for each of the four x-scales introduced in 

Section 2.2. For a normalized discrete population, the variance of X, which we denote by σX
2 because it is the 

equivalent of the variance of X for continuous populations, is 

(47) 
( )

( )

2
2 21

2

1

1

1

n
ii

X Xn
ii

i y

n y
σ µ=

=

−
= −

−
∑

∑
, 

Example. In the case of perfect equality, Y is a constant and X has a Uniform discrete distribution. When 

the natural x-scale is used, [ ] ( 1) / 2E X n= +  and [ ] ( 1)( 1) /12Var X n n= + − . When the normalized x-scale is 

used, 1 / 2Xµ =  and 2 ( 1) /12( 1)X n nσ = + − . 

The barycentric income, yB, can be computed by the linear interpolation 

(48) ( )( )L R LB i B L i iy y i i y y= + − − , 

where iB is the barycentric rank, i.e., the rank corresponding to the barycenter, given by 

(49) ( 1) 1B Xi n µ= − + , 

iL is the rank of an individual immediately to the left of the barycenter or at the barycenter, obtained as the 

integer part of iB, iL =  iB , and iR = iL +1 is the rank of an individual immediately to the right of the barycenter. 

Finally, the barycentric share can be computed by 

(50) ( )/
B B B

B i i ii i i i i i
s y y y

< < >
= +∑ ∑ ∑ , 

where the individual at the barycenter, if any, is not considered so that the barycentric share is equal to 1/2 in 

the case of perfect equality, as in the continuous case. 

Table 1 Column 2 summarizes the main formulae introduced in this section for the case of normalized 

discrete populations. Figure 5 illustrates these formulae with a numerical example. 

 

Figure 5. 
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2.4 THE NORMALIZED LORENZ CURVE 
In this section, we show that using the normalized x-scale for discrete populations, we obtain a normalized 

Lorenz curve (Figure 5 Panel 5) that is consistent with the Lorenz curve for continuous populations. 

The egalitarian line, e(x), connects the points {(xi, pi)}. When the normalized x-scale is used, (0) 1 /e n=  

and (1) 1e = , and the egalitarian line is represented by the function 

(51) 1 1( ) ne x x
n n

−
= +  

Note that the intercept of the egalitarian line with the x-axis is x = −1/(n − 1) and it moves towards the origin 

as n increases. The area under the egalitarian line to be considered is equal to the sum of the areas of the (n − 

1) rectangles having base 1/(n − 1) and height pi = 1/n, which is equal to 1/2 

(52) 
1 1

1 1

1 1 1/ 2
1 1

n n

i
i i

iE p
n n n

− −

= =

= = =
− −∑ ∑  

The concentration area C, i.e., the area between the egalitarian line and the graph of FX(x) in the range [0,1], 

which we label as the normalized Lorenz curve, is equal to the sum of the areas of the (n − 1) rectangles having 

base 1/(n − 1) and height (pi − qi), and it is equal to µX − 1/2, 

(53) ( )
1

1

1 1/ 2
1

n

i i X
i

C p q
n

µ
−

=

= − = −
− ∑  

Thus, by using the normalized x-scale, we obtain the normalized Lorenz curve such that also for discrete 

populations, as for continuous populations, i) the ratio between the concentration area and the area under the 

egalitarian area is equal to the concentration ratio R, as defined by Gini for the case of discrete populations, as 

shown by (3), and ii) R is equal to 2µX − 1, 

(54) 2 2 1X
CR C
E

µ= = = − . 

Note that instead, when the Lorenz x-scale is used, i.e., when the Lorenz curve is plotted, as usual, by 

considering the points 1 1 2 2{(0,0),( , ),( , ),..., (1,1)}p q p q , the area under the egalitarian line is equal to the sum 

of the areas of the (n − 1) rectangles with base 1/n and height pi = 1/n, and therefore, it is EL = (n − 1)/2n, and 

the concentration area is CL = C (n − 1)/n. Thus, when the Lorenz x-scale is used, the correspondence between 

discrete and continuous populations is lost, because R = CL/EL = 2C ≠ 2CL. On the other hand, considering the 

area of the triangle under the egalitarian line, ET = 1/2, would not only amount to comparing a continuous set 

of points with a discrete one, but it would also make R ≠ CL/ET = 2CL, so that the geometrical interpretation of 

the Gini index based on the Lorenz curve would also be lost. Note, however, that one would obtain the pseudo-

Gini index, i.e., G = 2CL = R (n − 1)/n, discussed in Section 1.3. 

Therefore, we conclude that the normalized x-scale is the only x-scale for discrete populations that is 

consistent with i) the definition of the concentration ratio R given by Gini, ii) the geometrical interpretation of 

R as the ratio between the concentration area and the area under the egalitarian line, R = C/E, and iii) the case 

of continuous populations, for which R = 2C. 
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3. THE BARYCENTER AND THE BALANCE OF INEQUALITY (=GINI) INDEX 
In this section, we define an inequality index that is based on the notion of using the center of mass of Q(x) 

or fX(x), i.e., the barycenter introduced in Section 2, to measure the concentration of distributions.20 We label 

this approach to the measurement of inequality as the Balance of Inequality approach. First, we introduce this 

inequality index, which we label as the Balance of Inequality (BOI) index. Then we show that this index is 

equal to the Gini’s concentration ratio R.21 

Definition 10 – The Balance of Inequality (BOI) index 

The Balance of Inequality index is denoted by BOI and defined as the normalization of the barycenter of 

the distribution, xB, by 

(55) B Median

Max Median

x xBOI
x x

−
≡

−
   ♦ 

The physical intuition behind the Balance of Inequality is simple. Let’s consider an income distribution and 

assume that individuals in the population are sorted in non-decreasing order of income. In the case of perfect 

equality, i.e., when all individuals have the same income, the barycenter is in the median position. In the case 

of perfect inequality, i.e., when one individual receives all the income, the barycenter is in the position of this 

individual, at the right end. For any other distribution, the barycenter is between these two extremes and it 

indicates the income concentration. The further the barycenter is from the position of the median, the greater 

the income inequality. Thus, the Balance of Inequality “weighs” the distribution and the barycenter is a 

measure of inequality. By normalizing the barycenter, we obtain an inequality index that assumes values in the 

range [0,1]. The Balance of Inequality combines this physical intuition with a graphical representation of 

income inequality that shows at the same time the entire income distribution, the barycenter, i.e., the expected 

income recipient, and the BOI index on a scale between 0, i.e., the case of perfect equality, and 1, i.e., the case 

of perfect inequality (Figure 1 Panel 2, Figure 2-5 Panel 3). 

Proposition 13 – The Balance of Inequality index is x-scale and y-scale invariant 

Proof. Implied by Proposition 11 and Definition 10.   � 

Proposition 14 – For normalized populations, the Balance of Inequality index is 2µX − 1 

(56) 2 1XBOI µ= −    ♦ 

Proof. Implied by Proposition 12.   � 

                                                 
20 The more concentrated is a distribution and the more it is unequal. As noted by Lorenz (1905, p. 215), the aim is to 
study whether income and wealth are concentrated or diffused among the population. As noted by Gini, the same method 
is “applicable not only to incomes and wealth, but to all other quantitative characteristics […] to obtain a rough estimate 
of the various degrees of inequality which the distribution of these characteristics presents” (Gini, 1921, p. 124). 
21 The idea of using the center of mass of the distribution to measure its concentration is not entirely new. We acknowledge 
that the same idea was proposed by Fernando Giaccardi (1950a, 1950b). Studying discrete populations, he showed that 
not only the Gini index but also the Bonferroni and De Vergottini indices, among others, are obtainable from a more 
general expression based on this “mechanical” approach, which he labelled as the concentration index K. The Gini index 
is obtained when individuals are placed at constant distances and the other indices are obtained by varying the positions 
in which individuals are considered. Giaccardi contribution has been neglected by the literature on the measurement of 
inequality and only by chance we discovered it on October 31, 2021. 
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Proposition 15 – The Balance of Inequality index is equal to the Gini index 

(57) BOI R=    ♦ 

Proof for continuous populations. Implied by Proposition 6 and Proposition 14.  

Proof for discrete populations. Using (5), (44), and (56),22 we obtain that the Balance of Inequality index is 

the Gini’s concentration ratio R 

(58) 
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Because the Balance of Inequality index is based on a different approach than the Gini index, i.e., it is based 

on the use of the barycenter of the distribution, and it is accompanied by new economic, geometrical, physical, 

and statistical interpretations, in the following we use the denomination Balance of Inequality (=Gini) index 

and the symbol BOI. 

Note that Definition 10 applies for both continuous and discrete populations, and to any x-scale. Table 2 

shows the Balance of Inequality index formulae for each of the four x-scales introduced in Section 2.2. Note 

that, for Proposition 13, all the formulae give the same result, which can also be expressed as 

(59) 
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which is a well-known expression for the Gini index (Jasso, 1979). 

 

4. EXAMPLES: THEORETICAL DISTRIBUTIONS 
In this section, we show the results of the application of the methodology introduced in the previous sections 

to thirty theoretical distributions (Table 3). We selected these distributions among those usually applied in the 

study of income inequality and those that could show the wider utility of the proposed methodology, choosing 

the distributions that allowed the derivation in closed form of Q(x) and µX. For each distribution, starting from 

fY(y) or FY(y), we derived i) Q(x), µY, fX(x), and FX(x); ii) the barycenter, µX, the Balance of inequality (=Gini) 

index, and its range; iii) xM, yB, and sB. 

For each distribution, Table 4 shows the parameters space, FY(y) and fX(x)23; Table 5 shows the barycenter, 

µX, the BOI index, and its range; and Table 6 shows µX, xM, and the sign or value of their difference.24 Only 

closed-form expressions are reported, and excessively long expressions are omitted. Overall, however, the 

omissions are very few. 

 

Table 3, 4, 5, and 6. 

                                                 
22 The same result can be shown using (4), (55), and the expression of the barycenter for the natural x-scale (Table 2). 
23 For each distribution, Table A2.1 in Appendix 2 shows the five characteristic functions, i.e., fY(y), FY(y), Q(x), fX(x), 
and FX(x). 
24 For each distribution, Table A2.2 in Appendix 2 shows the median, µY, yB, xM, µX and the sign or value of µX − xM. 
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We double-checked the expressions obtained analytically by a numerical example and a graphical 

representation.25 Figure 2, Figure 3, and Figure 4 are examples of these graphical representations, for the 

Uniform, Exponential, and Weibull distributions, respectively.26 

This application to thirty theoretical distributions shows that whereas in some cases the location of the mean 

only is fixed (e.g., Gumbel, Uniform, and U-Quadratic distribution), in others also the barycenter is fixed (e.g., 

Exponential, Half Logistic, Half Normal, and Triangular distribution) and in these cases the difference µX − xM 

is positive and constant, i.e., the point (µX, yB) is on the right of the point (xM, µY) on the curve Q(x) at a constant 

distance irrespective of the values of the parameters of the distribution. In other cases, the difference µX − xM is 

negative and variable, and in still others, it can be positive or negative based on the value of the parameters. 

Therefore, we can advance the following two propositions. 

Proposition 16 – There is no general relation between the barycenter and the mean, i.e., when there is a 

relation between them it is distribution-specific.   ♦ 

Proof. The Exponential distribution, [0, )( ; 0) (1 ) ( )y
YF y e I yλλ −

∞> = − , is a counterexample showing the 

absence of a general relation between the mean and the barycenter. Whereas the mean, µY = 1/λ, depends on 

the distribution parameter λ, the barycenter is fixed, µY = ¾  (Figure 3).   � 

Proposition 17 – The barycenter is a new measure of the location or central tendency of a distribution. 

Because there is no general relation between the barycenter and the mean, the barycenter is a new measure 

of central tendency or location, which adds to the mean, median, and mode.27 .   ♦ 

We conclude by noting that these examples also show that the expressions of Q(x) and fX(x) are much 

simpler than that of FX(x) (Table A2.1), and therefore the derivation of the Balance of inequality (=Gini) index 

from the normalization of the barycenter is much simpler than its derivation from the Lorenz curve. Note also 

that the ranges of the BOI index (Table 5 Column 4) may be a guide for the selection of the appropriate 

theoretical distribution to be applied to a data set. For instance, a BOI index equal to 0.3 is consistent with a 

Pareto I distribution but not with a Pareto II distribution. 

 

5. THE BARYCENTER AND THE GINI’S MEAN DIFFERENCE 
Using the barycenter, we can express the Gini’s mean difference in terms of the mean and the barycenter 

of the distribution, i.e., as a function of just these two measures of central tendency, and we can give a new 

geometrical representation for the Gini’s mean difference. 

Proposition 18 – The Gini’s mean difference is equal to four times the product of the mean by the 

distance of the barycenter from the median location. 

                                                 
25 We used Wolfram Mathematica v. 11.2 and an ad-hoc R code (Di Maio, 2022). 
26 Appendix 3 shows similar graphical representations for almost all theoretical distribution listed in Table 3. 
27 Winkler (2009, p. 153) observed that “In the early days of statistics the number of measures of location or central 
tendency proliferated. Of those only the arithmetic mean survived, with the median and mode taking distant second and 
third places.” However, as far as we have been able to ascertain, the barycenter of the distribution is a new measure of 
central tendency. 
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(60) 14
2Y Xµ µ ∆ = − 

 
   ♦ 

Proof. Implied by (6) and Proposition 6.   � 

Proposition 19 – Geometrical representation of the Gini’s mean difference. 

The Gini’s mean difference is equal to the area of the rectangle built on the quantile function’s plot having 

as base twice the distance of the barycenter from the median location and as height twice the mean of the 

distribution (Figure 1 Panel 3).   ♦ 

An application of (60) is that the limiting value of the correlation between variates-values and ranks in 

samples of n as the sample size n tends to infinity, introduced by Stuart (1954), can be expressed in terms of 

the mean, the barycenter, and the standard deviation, σY, of the distribution by 

(61) 
3 12 3

2 2
Y

X
Y Y

C µ µ
σ σ
∆  = = − 

 
 

This application suggests that the Gini’s mean difference is not a measure of dispersion, like the standard 

deviation, but a measure of central tendency that summarizes the mean and the barycenter and that the 

barycenter of the distribution may have wide applications in statistics. 

 

6. BARYCENTER-BASED NEW INSIGHTS FOR THE GINI INDEX 
Since the Balance of Inequality index is equal to the concentration index R, i.e., the Gini index, it has also 

the same well-known properties. However, using the barycenter of the distribution, we can propose new 

interpretations for the Gini index and clarify or motivate in a new way some of its properties. First of all, we 

summarize the results obtained in the previous sections by the following proposition. 

Proposition 20 – The Balance of Inequality (=Gini) index is the normalization of the barycenter of the 

distribution. 

Proof. Implied by Definition 10 and Proposition 15.   � 

The barycenter and the Gini index of a distribution convey the same information and the geometrical, 

economic, physical, and statistical interpretations of the barycenter presented in the previous sections can be 

applied also to the Gini index. 

Let now consider an income distribution in a discrete population, and let ε be the amount of a positive 

income transfer from an individual with rank i to one with rank j. Let's define this transfer as progressive 

(regressive) when it occurs from an individual with a greater (smaller) income to one with a smaller (greater) 

income, and as rank-preserving when it leaves unchanged the ranks of the two individuals. The principle of 

progressive transfers (e.g., Ebert, 1988) has the following barycenter-based physical interpretation. 

Proposition 21 – Rank-preserving income transfers and the Balance of Inequality (=Gini) index 

A rank-preserving progressive (regressive) transfer shifts the barycenter to the left (right) and reduces 

(increases) the BOI index. The movement of the barycenter and the variation in inequality depend 

exclusively on the product of the amount of the transfer times the distance between the two individuals.   ♦ 
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Proof. Using (44) and (56), the movement of the barycenter due to the income transfer is 

(62) 
( )
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and the BOI index variation is ∂BOI = 2 ∂µX.   � 

This property accords with common sense. Indeed, it means that a given transfer to a poor recipient 

decreases inequality the more the richer the donor is and that, for a given transfer, the maximum decrease in 

inequality occurs when the recipient is the poorest person and the donor is the richest person in the population. 

Proposition 22 – The Balance of Inequality (=Gini) index attaches the same weight to all rank-preserving 

transfers of the same amount that occur between two individuals separated by the same distance, 

regardless of their incomes. 

Proof. Implied by (62).   � 

A greater progressive transfer between two high–income individuals, in the right tail of the distribution, 

may decrease the Gini index more than a smaller one between two individuals belonging to the middle-income 

class. Thus, as also shown by Aaberge (2000), it is in general not true that “the Gini coefficient attaches more 

weight to transfers affecting middle income classes” (Atkinson, 1970, pp. 256–257) or that it is “more sensitive 

to transfers at the center of the distribution than at the tails” (Alvaredo, 2011, p. 274). 

Proposition 23 – The barycenter and the Balance of Inequality (=Gini) index attach the same weight to 

all incomes.   ♦ 

Proof. Using (49), (44) can be written as  

(63) 
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From a physical point of view, this equation conveys the second condition for the static equilibrium of the 

system composed of the masses yi placed in the normalized positions {0,..., ( 1) / ( 1),...1}ix i n= − −  on a beam 

supported by a fulcrum placed in the center of mass, i.e., the summation of all moments acting on the system 

is zero. From an economic point of view, it implies that, because the distance between adjacent individuals is 

constant, the barycenter and the BOI index attach the same weight to all incomes.   � 

Proposition 24 – Rank-preserving additions to incomes and the Balance of Inequality (=Gini) index 

When the receiver position is on the right (left) of the barycenter, a rank-preserving positive addition to the 

income of one individual moves the barycenter to the right (left), and increases (decreases) inequality, as 

measured by the BOI index.   ♦ 

Proof. Implied by (63).   � 

Note that this proposition implies that it does not matter whether the recipient's income is greater or smaller 

than the mean income of the population. 

Proposition 25 – The Balance of Inequality (=Gini) index depends on the barycenter of the income 

distribution and does not depend on the mean income. 

Proof. Implied by Proposition 16.   � 
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For instance, an equal proportionate increase (or decrease) of all incomes does not affect the Gini index 

because the barycenter is unaffected, not because the Gini index is defined relative to the mean, as claimed by 

some authors (e.g., Atkinson, 1970, p. 253). On the contrary, an equal addition to all incomes decreases the 

Gini index because the barycenter decreases, moving to the left toward the median location, not because the 

mean income increases. 

The barycenter of the income distribution divides the population into two groups, which can be considered 

as both “the winners” and “the losers” in the income distribution and “the rich” and “the poor”. 

Proposition 26 – The higher the Balance of Inequality (=Gini) index, the more are “the losers”. 

“The winners” (“the losers”) in the income distribution are the income recipients on the right (left) of the 

barycenter: they have a greater (smaller) probability of receiving one unit of income than the expected 

income recipient. 

Proposition 27 – The higher the Balance of Inequality (=Gini) index, the more are “the poor” 

“The rich” (“the poor”) are the income recipients on the right (left) of the barycenter that have an income 

greater (smaller) than the barycentric income: a small positive addition to their income increases (decreases) 

income inequality. 

 

7. THE BARYCENTER AND INFERENCE: POINT ESTIMATES 
In this section, we provide two estimators of the population’s barycenter and BOI index, one for a random 

sample from the population and one for weighted observations. 

7.1 RANDOM SAMPLE 
Let 1 2 ... ...i ny y y y≤ ≤ ≤ ≤  be the order statistics, arranged in non-decreasing order of magnitude, of a 

sequence of n independent and identically distributed non-negative random variables with the same probability 

density function fY(y) and such that their sum is positive. The rank order statistics are the set of positive integers 

from 1 to the sample size n. Using (40), the empirical probability mass function of X is  

(64) 
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where -scal (e )ix x i= . Applying the normalized x-scale, i.e., using (44), the plugin estimator of the 

population’s barycenter is 

(65) 
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and the estimation of the BOI index is obtained by 

(66) .
ˆ ˆ2 1B NBOI x= −  

Note that the difference with the commonly used estimator of the Gini index based on (59) (e.g., Langel & 

Tillé, 2013 eq. 2) is that we do not estimate directly the Gini index but we obtain the estimation of the Gini 

index from the estimation of the barycenter. In the next section, this method allows us to use the additive 
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property of the center of mass to obtain a new estimator of the Gini index for weighted observations that is not 

based on the Lorenz curve. 

7.2 WEIGHTED OBSERVATIONS 
The Gini index is generally estimated through a random sample obtained by survey sampling, in which 

each observation has an associated sampling weight that is an estimate of how many individuals in the 

population of interest each observation represents. Sampling weights are needed to make the random sample 

representative of the overall population and are used to correct for sampling bias, unit or item non-response 

bias, and data collection bias (e.g., Langel & Tillé, 2013). 

Let 1,..., ,...,k my y y  denote m observations, i.e., incomes, in a random sample, sorted in non-decreasing 

order, and 1,..., ,...,k mw w w  the associated sampling weights. The quantile function of this random sample is a 

discrete step function, with one step for each weighted observation. Assuming that sampling weights are 

integers, i.e., each observation represents an integer number of people, and using the normalized x-scale, we 

can estimate the center of mass of each step, . ,ˆB N kx , by 

(67) ( )1
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and the share of the total income of each weighted observation, ˆks , by  

(68) 
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Thus, we obtain a plugin estimator of the barycenter for weighted observations, by 

(69) . . ,1
ˆ ˆ ˆm

B N k B N kk
x s x

=
=∑ , 

and the estimate of the Balance of Inequality (= Gini) index for weighted observations, by 

(70) .
ˆ ˆ2 1B NBOI x= − , 

Note that you would obtain the same estimations by duplicating each weighted observation yk in the random 

sample (wk − 1) times, and then applying the plugin estimators (65) and (66). However, this procedure may 

not be feasible for very large datasets with the available computing capacity. 

Finally, note that for non-integers sampling weights, which imply the assumption of continuous 

populations,28 the estimator of the center of mass of each step is 

(71) ( ) ( )1 1
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Thus, the plugin estimator of the barycenter for weighted observations is 

(72) . . ,1
ˆ ˆ ˆm
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=
=∑ , 

                                                 
28 Even if actual populations can often be considered virtually infinite (Monti, 1991), in many applications the population 
considered is relatively small and in these cases (67) is preferable. 
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and the estimate of the Balance of Inequality (= Gini) index for weighted observations is 

(73) .
ˆ ˆ2 1B CBOI x= −  

 

8. EMPIRICAL APPLICATION: PERSONAL INCOME INEQUALITY IN LIS COUNTRIES 
In this section, we apply the plugin estimators of the barycenter (69) and BOI index (70) to estimate personal 

income inequality in some countries. We use the harmonized data sets in the Luxembourg Income Study (LIS) 

Database provided by the LIS Cross-National Data Center (2021), and we consider the year 2016 (Wave X), 

or the previous year closest to 2016 when data for 2016 are not available. We also add a handful of historical 

data to give some depth to the analysis. 

We consider the total personal income variable (pitotal) that is “the sum of cash and non-cash income from 

labor (including wage income, self-employment income, and fringe benefits, but excluding own consumption), 

income from pensions (including both public and private pensions) and non-pension public social benefits 

whose eligibility is based on individual rather than household characteristics (namely wage replacement 

benefits, such as maternity and parental leave benefits, unemployment benefits, sickness and work injury 

benefits, and disability benefits), as well as private scholarships” (LIS Cross-National Data Center, 2019). We 

include in the analysis all the countries for which personal data are available. 

We keep all observations, i.e., we do not bottom and top code data to avoid introducing a bias in the 

estimation. However, we make negative and missing incomes zero, if any. We also round to the nearest integer 

the personal weight (ppopwgt) provided by LIS, which is the population individual cross-sectional weight 

variable that inflates the result to reflect the total individual population covered by the dataset (LIS Cross-

National Data Center, 2019). 

Table A4.1 in Appendix 4 reports the details of this analysis, showing the great heterogeneity between the 

different countries as regards the use of the personal weights and the number of observations per inhabitant. 

Whereas for some countries, observations may represent even less than a dozen people, for other countries, 

they represent no less than a few thousand people. The number of negative and missing values is low for all 

countries and zero for many. The rounding of personal weights does not affect the estimated population sizes 

and results significantly.29 

Figure 6 shows the two main results: i) the estimated barycenter of the income distribution, i.e., the expected 

income recipient, and ii) the estimated Balance of Inequality (= Gini) index for each country. These results 

confirm some stylized facts. Income inequality is lower in European countries, and in particular in the countries 

of Central and Northern Europe. For these countries, the expected income recipient is between the 74th 

(Hungary) and 83rd (Ireland) percentile. The United States of America, China, Japan, and Taiwan are just 

above this level. Income inequality is higher in Central and South America, e.g., in Mexico, the expected 

income recipient is at the 89th percentile, and it is very high in the low-income countries of Africa and Asia 

                                                 
29 The difference between the results obtained by applying (69) and (70) to rounded personal weights and those obtained 
by applying (72) and (73) to non-rounded personal weights is negligible. 
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for which data are available. The maximum value of income inequality is found in India, where the expected 

income recipient is at the 94.5th percentile, and therefore the BOI index is around 0.89. 

 

Figure 6. 

 

9. DISCUSSION AND CONCLUSIONS 
Whenever the object of study is the distribution of a quantitative characteristic of the individuals in a 

population, e.g., income, represented by the non-negative random variable Y with a positive finite mean, µY, 

and the quantile function Q(x), this distribution can also be studied by introducing a second random variable 

X having the probability density function fX(x) = Q(x)/µY. 

The barycenter of the distribution, i.e., the expected value of this second random variable, µX = E[X], is a 

new measure of the location or central tendency of distributions, which adds to the mean, median, and mode. 

The barycenter of the distribution is particularly important for the measurement of inequality. Indeed, the 

same barycenter-based formulae can be applied to both continuous and discrete populations to derive some of 

the most used inequality measures. Indeed (see also Table 1 Panel C), using the barycenter obtained by 

applying (24) for continuous populations and (44) for discrete populations, you derive: 

• the Balance of inequality (=Gini) index, BOI = 2µX − 1, 

• the concentration area between the egalitarian line and the Lorenz curve, C = µX − 1/2, 

• the area under the Lorenz curve, L = 1 − µX, 

• the Gini’s mean difference, ∆ = 4µY (µX − 1/2). 

The introduction of the barycenter allows for new economic, geometrical, physical, and statistical 

interpretations and graphical representations of these measures (Figure 1-5). 

In particular, this study shows that the Gini index, i.e., the concentration ratio R (Gini, 1914, 2005), is the 

normalization of the barycenter, and therefore, it provides a new statistical foundation for this inequality index, 

which is the most used but also the most criticized. Indeed, considering continuous populations, many authors 

define the Gini index from the Lorenz curve. However, the association between the Lorenz curve and the Gini 

index is problematic for discrete populations, and the normalized Lorenz curve introduced in this paper is a 

solution to this problem. Furthermore, a direct definition of the Gini index as “the ratio to the mean of half the 

average over all pairs of the absolute deviations between people” (Deaton, 1997, p. 139) was also deemed 

unsatisfactory by many, even if it corresponds with one of the ways you can write the concentration ratio R. 

Finally, the relation between the mean and the Gini index was not at all clear, and this study makes it clear that 

there is no relation because the Gini index depends on the barycenter and does not depend on the mean of the 

distribution. 

We propose that, for income distributions, the barycenter represents the expected recipient of one unit of 

income, as if the stochastic process that leads to the distribution of the total income among the population was 

observable as it unfolds. 
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The Balance of Inequality (Figure 1 Panel 2, Figure 2-5 Panel 3) provides a physical interpretation and 

geometrical representation of the Gini index. This graphical representation can be easily understood by the 

general public because it provides a way of illustrating inequality similar to the commonly used one based on 

a double-pan balance.  However, whereas the double-pan balance can only show that a few richer ones have a 

wealth that weighs a lot more than the wealth of many poorer ones, the Balance of Inequality shows the entire 

distribution of wealth, the position of its center of mass, i.e., the barycenter, and the value of the inequality 

index in the same graphical representation. The interpretation is straightforward: the more to the right the 

barycenter, the greater the inequality measured by the Balance of Inequality (=Gini) index. 

The application to thirty theoretical distributions shows that the Balance of Inequality (=Gini) index can be 

obtained much more simply from the quantile function than from the Lorenz curve. This indication could be 

useful to approach the problem of ranking intersecting Lorenz curves in a new way. 

The empirical application, with the estimation of personal income inequality in Luxembourg Income Study 

Database’s countries, illustrates the interpretation of the Balance of Inequality (=Gini) index as the 

normalization of the position of the expected income recipient. The barycenter also splits the population into 

two groups, which can be considered as “the winners” and “the losers” in the income distribution, or “the rich” 

and “the poor”. 

The application of the barycenter-based expression of the Gini’s mean difference to the limiting value of 

the correlation between variates-values and ranks in samples (Stuart, 1954) suggests that the barycenter, as a 

new measure of the location or central tendency of the distribution, may have wide applications in both 

economics and statistics. 
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FIGURES AND TABLES 

Figure 1 − Physical interpretation of the barycenter and Balance of inequality (= Gini) index, and geometrical 
representation of the Gini’s mean difference and concentration area 

Notes. Using an example Pareto distribution, this figure shows the physical interpretations and geometrical representations 
introduced in Section 2, 3, and 5. Panel 1 and 2 show the physical interpretation of the barycenter and Balance of Inequality (=Gini) 
index as the center of mass and normalization of the center of mass, respectively, of the quantile function of Y and probability 
density function of X. Panel 3 and 4 show the geometrical representation of the Gini’s mean difference in the plane of the quantile 
function of Y and concentration area in the plane of the cumulative distribution function of X, respectively. 



Figure 2 − The Y-perspective and X-perspective, and the barycenter and Balance of Inequality (= Gini) index for a Uniform distribution 

Notes. This figure shows the five characteristic functions of a Uniform distribution (Panel A), the expressions of the mean µY (Panel 2), barycenter µX and Balance of Inequality (= Gini) index 
(Panel 4), location of the mean xM and barycentric income yB (Panel 3), and barycentric share sB (Panel 5). Panel 1 and 4 also show the physical interpretation of the mean and barycenter as the 
center of mass of fY(y) and fX(x), respectively. Panel 3 shows the physical interpretation of the Balance of Inequality (= Gini) index as the normalization of the barycenter, which is also the 
center of mass of Q(x). Panel 5 also shows the egalitarian line and the concentration area C. Similar figures for other distributions are shown in Appendix 3. 



Figure 3 − The Y-perspective and X-perspective, and the barycenter and Balance of Inequality (= Gini) index for an Exponential distribution 

Notes. This figure shows the five characteristic functions of an Exponential distribution (Panel A), the expressions of the mean µY (Panel 2), barycenter µX and Balance of Inequality (= Gini) 
index (Panel 4), location of the mean xM and barycentric income yB (Panel 3), and barycentric share sB (Panel 5). Panel 1 and 4 also show the physical interpretation of the mean and barycenter 
as the center of mass of fY(y) and fX(x), respectively. Panel 3 shows the physical interpretation of the Balance of Inequality (= Gini) index as the normalization of the barycenter, which is also 
the center of mass of Q(x). Panel 5 also shows the egalitarian line and the concentration area C. Similar figures for other distributions are shown in Appendix 3. 



Figure 4 − The Y-perspective and X-perspective, the barycenter and Balance of Inequality (= Gini) index for a Weibull distribution 

Notes. This figure shows the five characteristic functions of a Weibull distribution (Panel A), the expressions of the mean µY (Panel 2), barycenter µX and Balance of Inequality (= Gini) index 
(Panel 4), location of the mean xM and barycentric income yB (Panel 3), and barycentric share sB (Panel 5). Panel 1 and 4 also show the physical interpretation of the mean and barycenter as the 
center of mass of fY(y) and fX(x), respectively. Panel 3 shows the physical interpretation of the Balance of Inequality (= Gini) index as the normalization of the barycenter, which is also the 
center of mass of Q(x). Panel 5 also shows the egalitarian line and the concentration area C. Similar figures for other distributions are shown in Appendix 3. 



Figure 5 − The Y-perspective and X-perspective, the barycenter and Balance of Inequality (= Gini) index for a normalized discrete population 

Notes. This figure shows the five characteristic functions for a normalized discrete population (Panel A), the expressions of the mean µY (Panel 2), barycenter µX and Balance of Inequality 
(= Gini) index (Panel 4), barycentric income yB (Panel 3), and barycentric share sB (Panel 5). Panel 1 and 4 also show the physical interpretation of the mean and barycenter as the center of 
mass of fY(yj) and fX(xi), respectively. Panel 3 shows the physical interpretation of the Balance of Inequality (= Gini) index as the normalization of the barycenter, which is also the center of 
mass of Q(xi). Panel 5 also shows the egalitarian line and the concentration area C. 



Figure 6 − Empirical application: Personal income inequality in Luxembourg Income Study Database’s countries 

Notes. This figure shows the results of the empirical application of the methodology for the estimation of the distributions’ barycenter 
and Balance of Inequality (=Gini) index by using weighted observations introduced in Section 7. On the basis of the estimated total 
individual income inequality in each country, the countries considered are aligned along the line BOI = 2µX −1, which represents the 
inequality of the income distribution as a function of the barycenter of the distribution, i.e. the expected income recipient. For 
instance, the maximum value of income inequality is found in India, where the expected income recipient is at the 94.5th percentile 
and therefore the Balance of Inequality (= Gini) index is around 0.89. The estimates are made by using the total personal income 
variable (pitotal) in the Luxembourg Income Study (LIS) Database provided by the LIS Cross-National Data Center. 



Table 1 – The Y-perspective and the X-perspective, the barycenter and its application to inequality measurement 

Function/Measure Continuous population Normalized discrete population 
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PANEL C For both populations Range 
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Notes. This table summarizes Section 2, 3, and 5 by showing the main formulae for continuous and normalized discrete populations. 
Panel A shows the five characteristic functions of distributions, the first two belonging to the Y-perspective and the last three to 
the X-perspective. Panel B shows the formulae for calculating the mean, the barycenter, and the other measures introduced in 
Section 2. Panel C shows the barycenter-based formulae applicable to both continuous and normalized discrete populations for the 
computation of the Balance of inequality (=Gini) index, the concentration area, the area under the Lorenz curve, and the Gini’s 
mean difference. 



Table 2 – The median location, the barycenter, the variance of X, and the Balance of Inequality (=Gini) index for four x-scales 

x-scale Distance between 
two adjacent 
individuals 

Median 
location 

Barycenter Normalized 
barycenter 

Variance of X Balance of Inequality 
(=Gini) index 

(1) (2) 1i ix x+ − (3) Medianx (4) [ ] 1

1

n
i ii

B n
ii

x y
x E X

y
=

=

= = ∑
∑

(5) 
1 ,1
2Xµ
 ∈  

(6) [ ]
2

21

1

n
i ii

Bn
ii

x y
Var X x

y
=

=

= −∑
∑

B Median

Max Median

x xBOI
x x

−
=

−

Natural scale 
(Pen Parade) 

{ }1,..., ,...,ix i n=
1 1

2
n +  1

1

n
ii

B Bn
ii

iy
x i

y
=

=

= =∑
∑

1
1

B
X

x
n

µ −
=

−
 [ ]

2
21

1

n
ii

Bn
ii

i y
Var X x

y
=

=

= −∑
∑

( )
( )

1 / 2
1 / 2

Bx n
BOI

n n
− +

=
− +

Lorenz scale 
1 ,..., ,...,1i

ix
n n

 =  
 

 
1
n

1
2

n
n
+  1

1

n
ii

B n
ii

iy
x

n y
=

=

= ∑
∑

1
1

B
X

nx
n

µ −
=

−
 [ ]

2
21

2
1

n
ii

Bn
ii

i y
Var X x

n y
=

=

= −∑
∑

( )
( )

1 / 2
1 1 / 2
Bx n n

BOI
n n

− +
=

− +

Normalized scale 
10,..., ,...,1
1i

ix
n
− =  
− 

1
1n −

1
2

( )
( )

1

1

1

1

n
ii

B n
ii

i y
x

n y
=

=

−
=

−

∑
∑

1
1

B
X B

ix
n

µ −
= =

−
 

( )
( )

2
2 21

2

1

1

1

n
ii

X Xn
ii

i y

n y
σ µ=

=

−
= −

−

∑
∑

 1 / 2 2 1
1 1/ 2

X
XBOI µ µ−

= = −
−

 

Shifted natural scale
{ }0,..., 1,..., 1ix i n= − −  1 1

2
n − ( )1

1

1n
ii

B n
ii

i y
x

y
=

=

−
= ∑

∑ 1
B

X
x

n
µ =

−
[ ] ( )2

21

1

1n
ii

Bn
ii

i y
Var X x

y
=

=

−
= −∑

∑
( )

( ) ( )
1 / 2

1 1 / 2
Bx n

BOI
n n

− −
=

− − −

Notes. This table shows in Column 1 the four x-scales introduced in Section 2. For each x-scale, Column 2 shows the (constant) distance between two adjacent individuals, Column 3 shows the 
median location, Column 4 and 5 show the expression of the barycenter and the normalized barycenter, respectively, Column 6 shows the expression of the variance of X, and Column 7 shows 
the expression of the Balance of Inequality (=Gini) index. 



Table 3 – Examples: Theoretical distributions 

Distribution Reference Figure 
(1) (2) (3) 

1 Champernowne-Fisk (Adapted from Dagum, 1990, p. 10) Figure A3.1 
2 Davies (Hankin & Lee, 2006, p. 67) Figure A3.2 
3 Exponential (Mood et al., 1974, p. 112) Figure A3.3 
4 Exponential, Exponentiated (Adapted from Giorgi & Nadarajah, 2010, p. 40) Figure A3.4 
5 Extreme-value (Adapted from Beirlant, Vynckier, & Teugels, 1996, p. 293) Figure A3.5 
6 Frechet I (Adapted from Giorgi & Nadarajah, 2010, p. 31) Figure A3.6 
7 Frechet II (Adapted from Giorgi & Nadarajah, 2010, p. 31) Figure A3.7 
8 Gumbel (Adapted from Mood et al., 1974, p. 118) Figure A3.8 
9 Half Logistic (Adapted from Giorgi & Nadarajah, 2010, p. 41) Figure A3.9 
10 Half Normal (Adapted from Mood et al., 1974, p. 111) Figure A3.10 
11 Kumaraswamy (Adapted from Kumaraswamy, 1980) Figure A3.11 
12 Log-Gompertz (Adapted from Dagum, 1990, p. 10) Figure A3.12 
13 Normal, symmetrically truncated (Adapted from Mood et al., 1974, p. 111) Figure A3.13 
14 Normal, symmetrically truncated 95% (Adapted from Mood et al., 1974, p. 111) Figure A3.14 
15 Pareto I (Kleiber & Kotz, 2003, p. 59) Figure A3.15 
16 Pareto II (Kleiber & Kotz, 2003, p. 60) Figure A3.16 
17 Pareto, Generalized (Adapted from Giorgi & Nadarajah, 2010, p. 40) Figure A3.17 
18 Power function I (Adapted from Giorgi & Nadarajah, 2010, p. 33) Figure A3.18 
19 Power function II (Adapted from Giorgi & Nadarajah, 2010, p. 34) Figure A3.19 
20 Rayleigh (Devroye, 1986, p. 29) Figure A3.20 
21 Stoppa (Stoppa, 1990) Figure A3.21 
22 Topp-Leone (Adapted from Topp & Leone, 1955, p. 212) Figure A3.22 
23 Triangular (Devroye, 1986, p. 29) Figure A3.23 
24 Tukey Lambda I (Adapted from Ramberg & Schmeiser, 1972, p. 988) Figure A3.24 
25 Tukey Lambda III (Ramberg & Schmeiser, 1972, p. 988) Figure A3.25 
26 Tukey Lambda IV (Ramberg & Schmeiser, 1974, p. 78) - 
27 Tukey Lambda, Generalized (Hankin & Lee, 2006, p. 71) Figure A3.26 
28 Uniform (Mood et al., 1974, p. 118) Figure A3.27 
29 U-Quadratic (Adapted from Giorgi & Nadarajah, 2010, p. 38) Figure A3.28 
30 Weibull (Kleiber & Kotz, 2003, p. 174) Figure A3.29 

Notes. This table shows the 30 theoretical distributions selected to illustrate the methodology introduced in Section 2 and 3. 
For each of the distributions listed alphabetically in Column 1, Column 2 shows the reference from which the distribution was 
taken, with any adaptation required to obtain the distribution of a non-negative random variable, and Column 3 indicates the 
summary figure in Appendix 3 for that distribution, similar to the figures in the main text for the Uniform (Figure 2), 
Exponential (Figure 3), and Weibull (Figure 4) distributions. 



Table 4 – Examples: Parameters, cumulative distribution function of Y, and probability density function of X 

Distribution Parameters Cumulative distribution 
function of Y 

Probability density function of X 
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x

λ

λλ λ
−

Β + +   −
 

3 Exponential ( 0)λ >  ( ) [0, )1 ( )ye I yλ−
∞−  ( ) [0,1)ln 1 ( )x I x− −

4 Exponential,
Exponentiated 

( 0)λ >  ( )  
[0, )1 exp ( )y I y

α
λ ∞− −   ( )1/

[0,1)
1 ln 1 ( )x I x

H
α

α

− −

5 Extreme-value 
(0 1,

0)
α

β
< <
>

1/

(0, )exp ( )y I y
α

α
β

−

∞

  
−  
   

 [ ]
( )

 

(0,1)

ln( )
( )

1
x

I x
α

α

−−

Γ −

6 Frechet I ( 1, 0)α β> >  (0, )exp ( )y I y
α

β

−

∞

  
−  
   

 ( )
( )

 1/

(0,1)

ln
( )

1 1/
x

I x
α

α

−
−  
Γ −

 

7 Frechet II 0( 0, 1, 0)y a β≥ > >  0
(0, )exp ( )

y y
I y

α

β

−

∞

 − 
−  
   

 [ ]
( )

 1/
0

(0,1)
0

ln( )
( )

 1 1/
y x

I x
y

αβ
β α

−+ −

+ Γ −
 

8 Gumbel 
21( / ln(ln10 ),

0)
α β
β

>
> (0, )exp exp ( )y I yα

β ∞

  −
− −  

  

[ ]
(0,1)

ln ln( )
( )

x
I y

α β
α βγ

− −

+
 

9 Half Logistic ( 0)λ >  ( ) [0, )1 exp 2 ( )y I yλ ∞− −  [0,1)ln(1 ) ( )x I y− −

10 Half Normal ( 0)σ > 1
[0, )erf ( )

2
y I y

σ
−

∞
 
 
 

 1
[0,1]erf ( ) ( )x I xπ −  

11 Kumaraswamy ( 0, 0)a b> > ( ) [0,1]1 1 ( )
bay I y − −   ( ) 11

[0,1]1 ( )
ba aaby y I y
−− −

12 Log-Gompertz ( 1, 0)α λ> >  ( ) (0, ]exp ( )y I yαλ −
∞− [ ]

( )

 1/

(0,1)

ln( )
( )

1 1/
x

I y
α

α

−−

Γ −
 

13 
Normal, 
symmetrically 
truncated 

( 0, 0,
/ )z

µ σ
µ σ
> >
≤

( )

[ ]

2 2

1

( , ),

, ,

1 1 erf 1 2
2 2

( ) ( )

( ) 1 ( )
zz z

y t t

I y I y

t a b
µ σµ σ µ σ

µ σ µ σ

µ
σ

−

+ ∞− +

  −  + − −   
    

+

= Φ = −Φ

( )( )1

[0,1]

1 2 erf 1 2 2 1

( )

t x

I x

σ
µ

− 
+ − − 

   

14 
Normal, 
symmetrically 
truncated 95% 

( 0, 0,
/ 1.96)
µ σ
µ σ

> >
≥

[ ] ( 1.96 , )1.96 , 1.96

1 1 1 erf 0.025
0.95 2 2

( ) ( )

y

I y I yµ σµ σ µ σ

µ
σ

+ ∞− +

  −  + −   
    
+

( )1

[0,1]

1 2 erf 0.95 2 1

( )

x

I x

σ
µ

− 
+ −   

   

15 Pareto I 0( 0, 1)y α> >  
0

0
[ , )1 ( )y

y
I y

y

α

∞

  
−  

   
 1/

[0,1)
1 (1 ) ( )x I xαα

α
−−  − 

 

16 Pareto II ( 1, 0)α β> >  [0, )1 1 ( )y I y
α

β

−

∞

  
− +  

   
 1/

[0,1)( 1) (1 ) 1 ( )x I xαα − − − − 

17 Pareto, Generalized ( 0, 0)α β> >  

1/

[0, / )

[ / , )

1 1 ( )

( )

y I y

I y

α

β α

β α

α
β

∞

  
− −  

   
+

( ) [0,1]
11 1 1 ( )x I xα

α
   + − −    

 

18 Power function I ( 0)a >  1
[0,1) [1, )( ) ( )ay I y I y−

∞+  1/
[0,1]

1 ( )aa x I x
a
+ 

 
 



Distribution Parameters Cumulative distribution 
function of Y 

Probability density function of X 

(1) (2) (3) ( )YF y  (4) 1( ) ( ) / ( ) /X Y Y Yf x Q x F xµ µ− = =   

19 Power function II ( 0)b > [0,1) [1, )1 (1 ) ( ) ( )by I y I y∞ − − +   ( ) 1/
[0,1]1 1 (1 ) ( )bb x I x + − −   

20 Rayleigh ( 0)σ >
2

[0, )21 exp ( )
2
y I y
σ ∞

  
− −  

  
 ( )  1/2

[0,1)
2 ln 1 ( )x I x
π

− −  

21 Stoppa 0( 0,
1, 0)

y
α θ

>
> > 0

 

0
( , )1 ( )y

y
I y

y

θα

∞

  
−  

   

( )
( )

1/1/

[0,1)

1
( )

 1 1/ ,

x
I y

αθ

θ α θ

−
−

Β −

22 Topp-Leone (0 1)α< < ( )2
[0,1] (1, )2 ( ) ( )y y I y I y

α

∞− +  
( )

( )

1

1/21/
[0,1]

1 1/ 2,1 / 2

1 1 ( )ax I y

α
−

−Β +  
 − −  

23 Triangular ( 0)a >  
2

[0, ]

( , )

2 1 ( )

( )

a

a

y y I y
a a
I y∞

 − 
 
+

( )1/2
[0,1]3 1 1 ( )x I y − − 

24 Tukey Lambda I ( )0λ > - [0,1]1 (1 ) ( )x x I xλ λ + − − 

25 Tukey Lambda III 
1

1 2

2 3

( ,
0, 0)

λ λ
λ λ

−≥
> >

- 
3 3

[0,1]
1 2

(1 )1 ( )x x I x
λ λ

λ λ
 − −
+ 

 
 

26 Tukey Lambda IV 
1

1 2

2 3 4

( ,
, , 0)

λ λ
λ λ λ

−≥
>

- 
( ) ( )

3 4
1 2

[0,1]1 1
1 2 3 4

(1 ) ( )
1 1

x x I x
λ λλ λ

λ λ λ λ− −

 + − −
 

+ + + +  

27 Tukey Lambda,
Generalized 1 2

( 0,
0, 0)

λ
λ λ

>
> >

- 
1 2

1 2

1 2

[0,1]

(1 )(1 )
1 (2 )

1 (1 ) ( )x x I xλ λ

λ λ
λ λ

+ +
+ +

 + − − 

28 Uniform (0 )a b≤ < < ∞ ( )[ , ] ,( ) ( )a b b
y a I y I y
b a ∞

−  + − 
( ) [0,1]

2 ( )a b a x I x
a b

+ −  +

29 U-Quadratic (0 )a b≤ < < ∞

3

[ , ]

( , )

1 21 ( )
2

( )

a b

b

a b y I y
b a

I y∞

 + − −  −   
+

( )1/3
[0,1]1 2 1 ( )b a y I y

a b
 −  + −  +  

30 Weibull ( 0, 0)α β> >  (0, )1 exp ( )y I y
α

β ∞

    − −   
     

[ ]
( )

 1/

[0,1)

ln(1 )
 ( )

1 1/
x

I y
α

α
− −

Γ +
 

Notes. In this table, for each of the distributions listed in Table 2, Column 2 shows the values of the distribution’s parameters such 
that the random variable Y is non-negative, and Column 3 and 4 show the cumulative distribution function of Y and probability 
density function of X, respectively. 



Table 5 – Examples: The barycenter of the distribution, the Balance of Inequality (=Gini) index and its range 

Distribution Barycenter BOI index (= Gini index) 
(1) (2) [ ]X E Xµ = (3) 2 1XBOI R µ= = −  (4) Range (5) R as in 

1 Champernowne-
Fisk 

1 11
2 α
 + 
 

1
α

( )0,1  

2 Davies 1

1 2

1
2

λ
λ λ
+

+ −
1 2

1 22
λ λ
λ λ
+

+ −
( )0,1  (Giorgi & 

Nadarajah, 2010) 

3 Exponential 3
4

1
2

1
2

(Giorgi & 
Nadarajah, 2010) 

4 Exponential,
Exponentiated 

2

2
H
H

α

α

2 1
H
H

α

α

− ( )0,1  * 

5 Extreme-value 12α −  2 1α −  ( )0,1  

6 Frechet I 1 1/2 α− +  1/2 1α −  ( )0,1  (Giorgi & 
Nadarajah, 2010) 

7 Frechet II 
( )
( )

1/
0

0

2  1 1/
2 2  1 1/
y

y

α β α
β α

+ Γ −

− Γ −  

( )
( ) ( )1/

0

 1 1/
2 1

 1 1/y
αβ α

β α
Γ −

−
+ Γ −

( )0,1  

8 Gumbel 
1 ln 21
2

β
α βγ

 
+ + 

ln 2β
α βγ+

( )0,1  

9 Half Logistic 3
4

1
2

1
2

* 

10 Half Normal 
1
2

2 1−  0.4142  (Giorgi & 
Nadarajah, 2010) 

11 Kumaraswamy 
( )
( )
1 1/ , 2

1
1 1/ ,

a b
a b

Β +
−
Β +

( )
( )

2 1 1/ , 2
1

1 1/ ,
a b
a b

Β +
−

Β +
( )0,1  (Giorgi & 

Nadarajah, 2010) 

12 Log-Gompertz 1/ 12 α −  1/2 1α −  ( )0,1  

13 
Normal, 
symmetrically 
truncated 

( )
( )

( )
( )

1

2

21

erf 2 erf 1 2

1 2

2 exp erf 1 2

1 2

t

t

t

t

σ
µ π

−

−

  −  


−
 − −  − 

− 

( )
( )

( )
( )

1

2

21

erf 2 erf 1 2

1 2

2 exp erf 1 2

1 2

t

t

t

t

σ
µ π

−

−

  −  


−
 − −  − 

− 

( )0,1  

14 
Normal, 
symmetrically 
truncated 95% 

1 90
2 361

σ
µ

+
180
361

σ
µ

( )0,1  

15 Pareto I 
2 1
α
α −

1
2 1α −

( )0,1  (Giorgi & 
Nadarajah, 2010) 

16 Pareto II 
1 3 1
2 2 1

α
α
− 

 −  2 1
α
α −

1 ,1
2

 
 
 

* 

17 Pareto, Generalized 
3

4 2
α
α

+
+

1
2 α+

10,
2

 
 
 

* 

18 Power function I 1
1 2

a
a

+
+

1
1 2a+

( )0,1  (Giorgi & 
Nadarajah, 2010) 

19 Power function II 
1 1 3
2 1 2

b
b

+ 
 + 

 
1 2

b
b+

10,
2

 
 
 

(Giorgi & 
Nadarajah, 2010) 

20 Rayleigh 
1 1

2 2
−

11
2

− 0.2929  



Distribution Barycenter BOI index (= Gini index) 
(1) (2) [ ]X E Xµ = (3) 2 1XBOI R µ= = −  (4) Range (5) R as in 

21 Stoppa 
( )
( )
1 1/ , 2
1 1/ ,

α θ
α θ

Β −
Β −

( )
( )

2 1 1/ , 2
1

1 1/ ,
α θ
α θ

Β −
−

Β −
 ( )0,1  (Stoppa, 1990) 

22 Topp-Leone 
( )
( )
1/ 2,1 2 21

2 1/ 2,1 2
α
α

 Β + −
 
Β + −  

( )
( )
1/ 2,1 2 2

1
1/ 2,1 2

α
α

Β + −
−

Β + −
 ( )0,1  * 

23 Triangular 
7

10
2
5

2
5

24 Tukey Lambda I 1 1 2
2 1 2λ λ
− +

+ + 2

2
2 3

λ
λ λ+ +

350,
102

 
 
 

* 

25 Tukey Lambda III ( )
3

2
1 2 3 3

1
2 2 3

λ
λ λ λ λ

+
+ + ( )

3
2

1 2 3 3

2
2 3

λ
λ λ λ λ+ + ( )0,1  

26 Tukey Lambda IV 

( )

( ) [

( ) ( )

1
1 2 3

12
4 4 1 2

11 1
3 4

/ 2 2

2 3

1 1

λ λ λ

λ λ λ λ

λ λ

−

−

−− −

 + +
− + + 

+ + − + 

( ){ }
( )( ){ [

( )( ) }

4 3 4 3 4

3 4 4 3

1

1 2 3 4

2 2 6

2 2

1 1

λ λ λ λ λ

λ λ λ λ

λ λ λ λ
−

+ + + +  

+ + −

+ + + 

( )0,1  * 

27 Tukey Lambda,
Generalized 

[{
]}{
[ ]}

1 2 1

2 1

1
2 1 2

(1 ) 4 (4 )

(3 ) 2(2 )

(2 ) 1 (2 )

λ λ λ

λ λ

λ λ λ
−

+ + +

+ +

+ + +

 [ ]
[ ]

2 1 2 1 2

1 2 1 2

2 2 (6 )
(2 )(2 ) 1 (2 )
λ λ λ λ λ
λ λ λ λ
+ + + +

+ + + +
( )0,1  * 

28 Uniform 
1 1
3

b
a b

 + + 

1
3

b a
a b
− 

 + 

10,
3

 
 
 

(Giorgi & 
Nadarajah, 2010) 

29 U-Quadratic ( )
5 3
7 7

a
a b

−
+ ( )

3 6
7 7

a
a b

−
+

30,
7

 
 
 

* 

30 Weibull 1 1/1 2 a− −−  1/ 1 2 α−−  ( )0,1  (Giorgi & 
Nadarajah, 2010) 

Notes. In this table, for each of the distributions listed in Table 2, Column 2 shows the expression of the barycenter of the distribution, 
and Column 3 and 4 show the expression of the Balance of Inequality (=Gini) index and its range, respectively.  Finally, Column 5 
shows the reference in which the same expression of the Gini index can be found, if any. An asterisk in Column 5 indicates that the 
expression we have obtained for the Gini index by using the barycenter of the distribution is different and simpler than that reported 
by Giorgi and Nadarajah (2010), which used the Lorenz curve. Column 5 is unreferenced when we were unable to find previous 
Gini index expressions for that distribution. However, we cannot exclude that they have already been published. Symbols and 
functions used are listed in Appendix 1. 



Table 6 – Examples: The x-distance between the barycenter and the location of the mean 

Distribution Barycenter Mean’s location x-distance Distribution Barycenter Mean’s location x-distance 
(1) (2) [ ]X E Xµ = (3) ( )M Y Yx F µ= (4) X Mxµ − (1) (2) [ ]X E Xµ = (3) ( )M Y Yx F µ= (4) X Mxµ −

1 Champernowne-
Fisk 

1 11
2 α
 + 
 

 1

1 csc
α αα π

π α

−−    +    
     

 0X Mxµ − >  15 Pareto I 
2 1
α
α −

11
αα

α
− −  

 
 0X Mxµ − <  

3 Exponential 3
4

11
e

− 0.1179  16 Pareto II 
1 3 1
2 2 1

α
α
− 

 − 
11

αα
α
− −  

 
 0X Mxµ − >  

4 Exponential,
Exponentiated 

2

2
H
H

α

α
( )1 cosh sinhH H α

α α− +  0X Mxµ − <> 17 Pareto,
Generalized 

3
4 2

α
α

+
+

1/11
1

α

α
 −  + 

0X Mxµ − >  

5 Extreme-value 12α −  ( ) 1/exp 1  αα − −Γ −  0X Mxµ − <> 18 Power
function I 

1
1 2

a
a

+
+ 1

aa
a

 
 + 

0X Mxµ − >  

6 Frechet I 1 1/2 α− +  
1exp 1

α

α

−
  −Γ −    

0X Mxµ − <> 19 Power
function II 

1 1 3
2 1 2

b
b

+ 
 + 

1
1

bb
b

 −  + 
0X Mxµ − >  

7 Frechet II 
( )
( )

1/
0

0

2  1 1/
2 2  1 1/
y

y

α β α
β α

+ Γ −

− Γ −  

1exp 1
α

α

−
  −Γ −    

0X Mxµ − <> 20 Rayleigh 
11

2 2
− 1 exp

4
π − − 

 
 0.1024  

8 Gumbel 
1 ln 21
2

β
α βγ

 
+ + 

( )exp cosh sinhγ γ− +  0X Mxµ − >  21 Stoppa 
( )
( )
1 1/ , 2
1 1/ ,

α θ
α θ

Β −
Β −

( )
 

 

1 1/ ,
1

θα

α

α θ
θ

− Β −
− 

  
0X Mxµ − <  

9 Half Logistic 3
4

11
e

− 0.1179  22 Topp-Leone 
( )
( )
1/ 2,1 2 21

2 1/ 2,1 2
α
α

 Β + −
 
Β + −  

 
1 11 ,1
4 2

α

α  − Β +    

130,
90

 
 
 

 

10 Half Normal 
1
2

1erf
π

 
 
 

0.1320  23 Triangular 
7

10
5
9

0.1444  

11 Kumaraswamy 
( )
( )
1 1/ , 2

1
1 1/ ,

a b
a b

Β +
−
Β + ( )1 1 1 1/ ,

baab a b − − Β + 
0X Mxµ − >  28 Uniform 

1 1
3

b
a b

 + + 
1
2

1 0
6

b a
a b
−  > + 

 

12 Log-Gompertz 1/ 12 α − ( )exp 1 1/ αα − −Γ −  0X Mxµ − <> 29 U-Quadratic ( )
5 3
7 7

a
a b

−
+

1
2

( )
( )

3 0
14

b a
a b
−

>
+

 

14 
Normal, 
symmetrically 
truncated 95% 

1 90
2 361

σ
µ

+ 1
2

0X Mxµ − >  30 Weibull 1 1/1 2 a− −−
11 exp 1  

a

a
  − −Γ +  

   
0X Mxµ − >  

Notes. In this table, for some of the distributions listed in Table 2, Column 2 shows the expression of the barycenter of the distribution, and Column 3 the expression of the location of the mean. 
Column 4 shows the value or the sign of their difference. When µX − xM > 0, the point (µX, yB) is on the right of the point (xM,µY) on the curve of the quantile function, and the barycentric value is 
greater than the mean. µX − xM <> 0 indicates that the sign of the difference depends on the value of the distribution’s parameters. Symbols and functions used are listed in Appendix 1. 



APPENDIX 
(Supplemental material intended for publication online) 

APPENDIX 1 SYMBOLS AND FUNCTIONS 
This annex describes the symbols and functions used in the article. 

Table A1.1 reports the list of these symbols and functions, and some useful identities. 

Table A1.1 – Description of the variables 
SYMBOLS 

Euler-Mascheroni constant 0.577γ ≈  

Closed form omitted due to its length [...]  

No closed form [ ]ncf  

INDICATOR FUNCTION 

Indicator function ]({ } ](0,10,1

1  if  0 1
0  otherwise

x
I I

< ≤
= = 



GAMMA FUNCTION 

Euler gamma function 1

0
( 0) z tz t e dt

∞ − −Γ > = ∫
Identities: 

( )
( ) ( )
( )
( )

(1 ) ( )
1 1

1/ 2 2 3 / 2

1 2 3 ... ( 1) ( 1)!

1 !

a a a

n n n

n n

π

Γ + = Γ

Γ =

Γ = Γ =

Γ = ⋅ ⋅ ⋅ ⋅ − = −

Γ + =

( )

( )

(1 ) ( )
(1 ) ( )
( ) 1 ( 1)

( )( 1)
1

( ) ( )
sin( )

( ) (1 )
sin( )

z z z
z z z

x x x
xx

x

x x
x x

x x
x

π
π
π
π

Γ + = Γ
Γ − = − Γ −

Γ = − Γ −

Γ
Γ − =

−

Γ Γ − = −

Γ Γ − = −

Incomplete gamma function 1( 0, 0) a t

z
a z y e dt

∞ − −Γ > > = ∫
Generalized incomplete gamma 
function 0 1 0 1( 0, 0, 0) ( , ) ( , )a z z a z a zΓ > > > = Γ −Γ  

(…) 



BETA FUNCTION 

Euler beta function ( )
1 11

0
( 0, 0) 1 baB a b y y dy−−> > = −∫

Identities: 
( , ) ( , )B a b B b a=

( ) ( )( , )
( )

( ) ( , )
( ) ( )
( ) ( ) ( , ) ( ) ( , )
( ) ( ) ( ) ( , ) ( , )

a bB a b
a b

a B a b
a b b
b a c B a b a B a b
c a b a B a c B a c

Γ Γ
=
Γ +

Γ
=

Γ + Γ
Γ Γ + Γ

= =
Γ Γ + Γ

Incomplete beta function ( ) ( ) 11

0
0, 0 1

z ba
z a b y y dy−−Β > > = −∫

Regularized incomplete beta function 
( )
( )

,
( 0, 0)

,
z

z

a b
I a b

a b
Β

> > =
Β

ERROR FUNCTION 

Error function ( )2

0

2erf( ) exp
z

z t dt
π

= −∫
Identities: 
erf( ) erf( )z z− = −  

Complementary error function erfc( ) 1 erf( )z z= −

Generalized error function ( )1

0

0 1 1 0

2

erf( , ) erf( ) erf( )
2 exp

z

z

z z z z

t dt
π

= −

= −∫

Inverse error function 
1erf ( ) ,
erf ( )

s z
s z

− =
=

 

Imaginary error function erfi( ) erf( ) /z iz i=

HARMONIC NUMBERS 

Harmonic numbers 1

1n
n i

H
i=

= ∑  

TRIGONOMETRIC FUNCTIONS 

Sine of z sin( )z  

Cosecant of z csc( ) 1/ sin( )z z=

HYPERBOLIC FUNCTIONS 

Hyperbolic sine of z sinh( )z  

Hyperbolic cosecant of z csch( ) 1/ sinh( )z z=

FACTORIAL 

Factorial 
( )

( ) ( )
! 1 2 3 ... 1

1 !

n n n

n n

= ⋅ ⋅ ⋅ ⋅ = Γ +

Γ = −



APPENDIX 2 THEORETICAL DISTRIBUTIONS: TABLES 
With reference to Section 4, this annex contains the tables representing the application of the methodology 

introduced in Section 2 and 3 to thirty theoretical distributions of non-negative continuous random variables. 



Table A2.1 – Examples: The five characteristic functions: fY(y), FY(y), Q(x), fX(x), and FX(x) 

Distribution Probability density function 
of Y 

Cumulative distribution 
function of Y 

Quantile function Probability density function 
of X 

Cumulative distribution function 
of X 

(1) (2) ( )Yf y  (3) ( )YF y  (4) 1( ) ( )YQ x F y− =  (5) ( ) ( ) /X Yf x Q x µ= (6) ( )XF x  

1 Champernowne-
Fisk ( ) 21

(0, )

( ; 1, 0)

( )

Yf y

y y

I y

α α

α λ

αλ λ
−− −

∞

> >

= +  ( ) 1

(0, )1 ( )y I yαλ
−−

∞+  
1/

1/
(0,1)

1 1 ( )I y
x

α
αλ

−
 − 
 

1/
1/

(0,1)

1sin 1

( )
x

I y

α
αα π λ

π α

−
   −   
    ( )2 1

1/

(0,1)

1 sin
1

1,1;2 1/ ;

1 1  ( )

F x

x I y
x

α

π αα
π α α

α
−

   −    +   
+ 

 − 
 

2 Davies - - 1 2
[0,1)(1 ) ( )cx x I xλ λ−−  

( )
1

2

 1
1 2

[0,1)

1 ,1

( )
(1 )

x I x
x

λ

λ

λ λ
−

Β + +  

−

( )1 2

[0,1) [1, )

1 ,1
( ) ( )

xI
I x I x

λ λ

∞

+ −

+

3 Exponential 
[0, )

( ; 0)
( )

Y
y

f y
e I yλ

λ

λ −
∞

>

= ( ) [0, )1 ( )ye I yλ−
∞−  ( ) [0,1)

1 ln 1 ( )x I x
λ

− − ( ) [0,1)ln 1 ( )x I x− −
( ) ( )

[0,1) [1, )

1 ln 1

( ) ( )

x x x

I y I y∞

+ − −  
+

4 Exponential,
Exponentiated 

( )
( ) 1

[0, )

( ; 0, 0)
exp

1 exp ( )

Yf y
y

y I y
α

α λ
αλ λ

λ
−

∞

> >

= −

− −  

( )  
[0, )1 exp ( )y I y

α
λ ∞− −   ( )1/

[0,1)
1 ln 1 ( )x I xα

λ
− − ( )1/

[0,1)
1 ln 1 ( )x I x

H
α

α

− − [ ]ncf  

5 Extreme-value 

1 1/

1/

(0, )

( ;0 1, 0)

1

exp ( )

Yf y

y

y I y

α

α

α β

α
β β

α
β

− −

−

∞

< < >

 
=  

 
  
−  
   

1/

(0, )exp ( )y I y
α

α
β

−

∞

  
−  
   

 [ ] 
(0,1)ln( ) ( )x I xαβ

α
−−  

[ ]
( )

 

(0,1)

ln( )
1
( )

x

I x

α

α

−−

Γ −
[ ]

( ) (0,1)

1 , ln( )
( )

1
x

I x
α

α
Γ − −

Γ −
 

6 Frechet I 
1

(0, )

( ; 1, 0)

exp

( )

Yf y

y y

I y

α α

α β

α
β β β

− − −

∞

> >

     = −    
     

 (0, )exp ( )y I y
α

β

−

∞

  
−  
   

 ( ) 1/
(0,1)ln ( )x I x

α
β

−
−  

( )
( )

 1/

(0,1)

ln
( )

1 1/
x

I x
α

α

−
−  
Γ −

 

( )
( )

(0,1) [1, )

1 1/ , ln
1 1/

( ) ( )

x

I x I x

α
α

∞

Γ − −  
Γ −

+



Distribution Probability density function 
of Y 

Cumulative distribution 
function of Y 

Quantile function Probability density function 
of X 

Cumulative distribution function 
of X 

(1) (2) ( )Yf y  (3) ( )YF y  (4) 1( ) ( )YQ x F y− =  (5) ( ) ( ) /X Yf x Q x µ= (6) ( )XF x  

7 Frechet II 

0
1

0

0
(0, )

( ; 0, 1, 0)

exp ( )

Yf y y

y y

y y
I y

α

α

α β

α
β β

β

− −

−

∞

≥ > >

− 
=  

 
 −  −  

   

0
(0, )exp ( )

y y
I y

α

β

−

∞

 − 
−  
   

 [ ]{ }1/
0 (0,1)ln( ) ( )y x I xαβ −+ −  [ ]

( )

 1/
0

(0,1)
0

ln( )
( )

 1 1/
y x

I x
y

αβ
β α

−+ −

+ Γ −
 

( )
( )

0

0

(0,1) [1, )

 1 1/ , ln
 1 1/

( ) ( )

y x x
y

I x I x

β α
β α

∞

+ Γ − −  
+ Γ −

+

 

8 Gumbel 

21

(0, )

( ; ln(ln10 ), 0)

1 exp exp

( )

Yf y

y y

I y

α β
β

α α
β β β

∞

> > =

  − −
−  

  
 (0, )exp exp ( )y I yα

β ∞

  −
− −  

  
[ ]{ } (0,1)ln ln( ) ( )x I yα β− −

[ ]

(0,1)

ln ln( )

( )

x

I y

α β
α βγ

− −

+
[ ]

(0,1)

ln ln( ) li( )

( )

x x x x

I y

α β β
α βγ

− − +

+

9 Half Logistic ( )
[0, )

( ; 0)
2 exp 2

( )

Yf y
y

I y

λ
λ λ

∞

>

= −  ( ) [0, )1 exp 2 ( )y I yλ ∞− −  [0,1)
1 ln(1 ) ( )

2
x I y

λ
− −

[0,1)

ln(1 )
( )

x
I y
− − ( ) ( )

[0,1)

1 ln 1

( )

x x x

I y

+ − −  

10 Half Normal 

2 [0, )0,

2

[0, )

( ; 0)
2 ( ) ( )

1 2 1exp
2

( )

Yf y
y I y

y

I y

σ

σ
φ

σ π σ

∞

∞

>
=

  = −  
   

 1
[0, )erf ( )

2
y I y

σ
−

∞
 
 
 

 1
[0,1]2 erf ( ) ( )x I xσ −  

1

[0,1]

erf ( )
( )

x
I x
π − { }1 2

[0,1]

1 exp erf ( )

( )

x

I x

− − − 

11 Kumaraswamy ( ) 11
[0,1]

( ; 0, 0)

1 ( )

Y
ba a

f y a b

aby y I y
−−

> >

= −
( ) [0,1]1 1 ( )

bay I y − −   ( )  1/1/
[0,1]1 1 ( )

abx I x − − 
( )
( )

 1/1/

[0,1]

1 1
( )

1 1/ ,

abx
I x

bB a b

 − − 
+

 [ ]ncf  

12 Log-Gompertz ( )1

(0, ]

( ; 1, 0)

exp

( )

Yf y

y y

I y

α α

α λ

αλ λ− − −

∞

> >

= −  ( ) (0, ]exp ( )y I yαλ −
∞−

 1/

(0,1)
1 ln( ) ( )x I y

α

λ

−
 −  

[ ]
( )

 1/

(0,1)

ln( )
1 1/
( )

x

I y

α

α

−−

Γ −

[ ]
( )

(0,1) [1, )

1 1/ , ln( )
1 1/

( ) ( )

x

I y I y

α
α

∞

Γ − −

Γ −

+



Distribution Probability density function 
of Y 

Cumulative distribution 
function of Y 

Quantile function Probability density function 
of X 

Cumulative distribution function 
of X 

(1) (2) ( )Yf y  (3) ( )YF y  (4) 1( ) ( )YQ x F y− =  (5) ( ) ( ) /X Yf x Q x µ= (6) ( )XF x  

13 
Normal, 
symmetrically 
truncated 

( ) [ ]
2

2

2

,
,

,

,

( ; 0, 0, / )
( )

( )
1 2

( )

1 ( )

Y

z z

f y z
y

I y
t

t z

z

µ σ
µ σ µ σ

µ σ

µ σ

µ σ µ σ
φ

µ σ

µ σ

− +

> > ≤

=
−

= Φ −

= −Φ +

( )
[ ]

2 2

1

( , ),

, ,

1 1 erf
2 2

1 2
( ) ( )

( ) 1 ( )
zz z

y t

t
I y I y

t a b
µ σµ σ µ σ

µ σ µ σ

µ
σ

−

+ ∞− +

  −  + −   
    

−

+

= Φ = −Φ

( ){
( ) }

1

[0,1]

2 erf 1 2

2 1 ( )

t

x I x

µ σ −+ −

− 

( )

( ) }

1

[0,1]

1 2 erf 1 2

2 1 ( )

t

x I x

σ
µ

−
+ − 



− 

( )

( ){
( )( ){ }}

21

 21

2 1 2

exp erf 1 2

exp erf 1 2 2 1

x
t

t

t x

σ
µ π

−

−

+
−

 − − 

− − − −  

14 
Normal, 
symmetrically 
truncated 95% 

[ ]
2

2

2

,
1.96 , 1.96

,

,

( ; 0, 0, / 1.96)
( )

( )
0.95

( 1.96 ) 0.025

1 ( 1.96 )

Yf y
y

I yµ σ
µ σ µ σ

µ σ

µ σ

µ σ µ σ
φ

µ σ

µ σ

− +

> > ≥

=

Φ − =

= −Φ +

} [ ]1.96 , 1.96

( 1.96 , )

1 1 1 erf
0.95 2 2
0.025 ( )

( )

y

I y

I y
µ σ µ σ

µ σ

µ
σ

− +

+ ∞

  −  +   
   

−

+

[{
( ) }

1

[0,1]

2 erf 0.95

2 1 ( )x I x

µ σ −+

− 

[

( ) }

1

[0,1]

1 2 erf 0.95

2 1 ( )x I x

σ
µ

−
+



− 

( ){ } 21

[0,1]

139
331

exp erf 0.95 2 1

55 ( )
894

x

x

I x

σ
µ

−

 − 


− −  

− 


15 Pareto I 
0

0

0
[ , )

0

( ; 0, 1)

( )

Y

y

f y y

y
I y

y y

α

α

α
∞

> >

 
=  

 
0

0
[ , )1 ( )y

y
I y

y

α

∞

  
−  

   
 1/

0 [0,1)(1 ) ( )y x I xα−− 1/
[0,1)

1 (1 ) ( )x I xαα
α

−−  − 
 

( )( )1 /
[0,1)

[1, )

1 1 ( )
( )
x I y

I y

α α−

∞

− −

+
 

16 Pareto II 
0

(1 )

[0, )
0 0

( ; 0, 1)

1 ( )

Yf y y

y I y
y y

α

α

α
− +

∞

> >

 
= + 

 

[0, )1 1 ( )y I y
α

β

−

∞

  
− +  

   
 1/

[0,1)(1 ) 1 ( )x I xαβ − − − 
1/

[0,1)( 1) (1 ) 1 ( )x I xαα − − − − 
( )( ){ }1 /

[0,1) [1, )

1 1 ( 1)

( ) ( )

x x

I y I y

α αα α−

∞

 − − − − 
+

17 Pareto,
Generalized 

1/ 1

[0, / )

( ; 0, 0)

1 1 ( )

Yf y

y I y
α

β α

α β

α
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−

> >

 
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 
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[0, / ) [ / , )

1 1
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y
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α
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α
β

∞
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+
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[0,1]

1 1

( )

x

I x

αβ
α
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[0,1]

11 1 1

( )

x

I x

α

α
   + − −    

( ) ( )1

[0,1]
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x x

I x
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α
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18 Power function
I 1

(0,1)
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Y
a

f y a
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=
1

[0,1) [1, )( ) ( )ay I y I y−
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1 ( )aa x I x
a
+ 

 
 
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19 Power function
II 1

(0,1)

( ; 0)

(1 ) ( )
Y

b

f y b

b y I y−

>

 = − 
[0,1) [1, )1 (1 ) ( ) ( )by I y I y∞ − − +   1/

[0,1]1 (1 ) ( )bx I x − −   ( ) 1/
[0,1]1 1 (1 ) ( )bb x I x + − −   

( ) ( ){ }1/

[0,1] (1, )

1 1 1

( ) ( )

bb x x x

I y I y∞

 − − − + 
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Distribution Probability density function 
of Y 

Cumulative distribution 
function of Y 
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Notes. For each of the distributions listed in Table 2, this table shows its five characteristic functions, i.e., fY(y) (Column 2), FY(y) (Column.3), Q(x) (Column.4), fX(x) (Column.5), and FX(x) (Column.6). 
Symbols and functions used are listed in Appendix 1. 



Table A2.2 – Examples: The median, the mean and its location, the barycenter and the barycentric value, and the x-distance between the barycenter and the mean 
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29 U-Quadratic 
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30 Weibull ( )1/ ln 2 aβ  
1 1
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 ( )  1/1 1/ ln 2
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Notes. For each of the distributions listed in Table 2, this table shows the median (Column 2), the mean (Column.3), the barycentric value (Column.4), the location of the mean (Column.5), the 
barycenter (Column.6), and the x-distance between the barycenter and the means location (Column 7). Symbols and functions used are listed in Appendix 1. 
 



APPENDIX 3 THEORETICAL DISTRIBUTIONS: GRAPHICAL REPRESENTATIONS 
With reference to Section 4, this annex contains the figures representing the application of the methodology 

introduced in Section 2 and 3 to thirty theoretical distributions of non-negative continuous random variables. 
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The graphs show a distribution with α = 2 and λ = 3

In this example, µY = 2.721, µX = 0.75, and BOI = 0.5

Figure A3.1 − Champernowne−Fisk distribution
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



Q(x;c > 0,λ1 > 0,0 < λ2 ≤ 1) = 
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The graphs show a distribution with λ1 = 0.3, λ2 = 0.5, and c = 2

In this example, µY = 1.875, µX = 0.6364, and BOI = 0.2727

Figure A3.2 − Davies distribution
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1. Quantile function, Q(x)
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2. Probability density function of X, fX(x)
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3. Cumulative distribution function of X, FX(x)



fY(y;λ) = λ e−λy I [0, ∞)(y), λ > 0
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The graphs show a distribution with λ = 1

In this example, µY = 1, µX = 0.75, and BOI = 0.5

Figure A3.3 − Exponential distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;α > 0,λ > 0) = αλ exp(− λy) 1− exp(− λy)
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The graphs show a distribution with α = 2 and λ = 3

In this example, µY = 0.5, µX = 0.6944, and BOI = 0.3889

Figure A3.4 − Exponentiated Exponential distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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The barycenter of the distribution, µX = E(X),
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;0 < α < 1,β > 0) = 
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The graphs show a distribution with α = 0.5 and β = 2

In this example, µY = 7.09, µX = 0.7071, and BOI = 0.4142

Figure A3.5 − Extreme value distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;α > 1,β > 0) = 
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The graphs show a distribution with α = 2 and β = 3

In this example, µY = 5.317, µX = 0.7071, and BOI = 0.4142

Figure A3.6 − Fréchet I distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1

Q(x)xdx = 2 −1 +1 α

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 2 1 α − 1

0.0

2.5

5.0

7.5

10.0

0.00 0.25 0.50 0.75 1.00
x

D
en

si
ty

4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;y0 ≥ 0,α > 1,β > 0) = 
α
β

 


y − y0

β



−1−α

exp 



−



y − y0

β



−α


 I (0, ∞) (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = exp 



− 


y − y0

β



−α


  I (0, ∞) (y)

Q(x) = FY
−1(x) = 


y0 + β [− ln(x)] −1 α



  I (0, 1) (x)

fX(x) = 
Q(x)

µY
 = 

y0 + β [− ln(x)] −1 α

y0 + β Γ(1− 1 α)   I (0, 1) (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 
y0 x + β Γ [1− 1 α, − ln(x)]

y0 + β Γ(1− 1 α)   I (0, 1) (x)
+  I [1, ∞)(x)

The graphs show a distribution with y0 = 1, α = 2, and β = 3

In this example, µY = 6.317, µX = 0.6743, and BOI = 0.3486

Figure A3.7 − Fréchet II distribution

µY

The mean of the distribution, µY = E(Y),
is the center of mass of fY(y)
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∞
fY(y)ydy = y0 + β Γ 


1−

1

α



0.0

0.1

0.2

0.3

0 10 20 30
y

D
en

si
ty

1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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yB = Q(µX) = y0 + β {ln2− ln 
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y0 + 21 α β Γ (1− 1 α)

y0 + β Γ (1− 1 α)

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}

 −1 α

xM = FY(µY) = exp 
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1
Q(x)xdx =  

y0 + 21 α β Γ (1− 1 α)
2 [y0 + β Γ (1− 1 α)]

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 =  
β Γ (1− 1 α)

y0 + β Γ (1− 1 α) (21 α − 1)
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4. Probability density function of X, fX(x)
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∞
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5. Cumulative distribution function of X, FX(x)



fY(y;
α
β

> ln(ln1021),β > 0) = 
1

β
 exp 





α − y

β
− exp 


α − y

β





  I (0, ∞) (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = exp 



− exp 


−

y − α
β






 I (0, ∞)(y)

Q(x) = FY
−1(x) = {α − β ln [− ln(x)]}  I (0, 1) (x)

fX(x) = 
Q(x)

µY
 = 

α − β ln [− ln(x)]
α + βγ

   I (0, 1) (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 
α x − β x ln [− ln(x)] + β li(x)

α + βγ
  I (0, 1) (x)

+  I (1, ∞)(x)

The graphs show a distribution with α = 2 and β = 0.5

In this example, µY = 2.289, µX = 0.5757, and BOI = 0.1514

Figure A3.8 − Gumbel distribution
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The mean of the distribution, µY = E(Y),
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1

Q(x)xdx = 
1

2
 


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β ln2

α + βγ

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The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 
β ln2

α + βγ
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4. Probability density function of X, fX(x)

sB

µX = ⌠
⌡0

∞
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5. Cumulative distribution function of X, FX(x)



fY(y;λ > 0) = 2λ exp(− 2λ y)  I [0, ∞) (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = 
1− exp(− λy)
1+ exp(− λy)  I [0, ∞)(y)

Q(x) = FY
−1(x) = −

1

2λ
 ln(1− x)  I [0, 1) (x)

fX(x) = 
Q(x)

µY
 = − ln(1− x)  I [0, 1) (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = x + (1− x) ln(1− x)  I [0, 1) (x)

+  I (1, ∞)(x)

The graphs show a distribution with λ = 2

In this example, µY = 0.25, µX = 0.75, and BOI = 0.5

Figure A3.9 − Half Logistic distribution
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The mean of the distribution, µY = E(Y),
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
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Q(x)xdx = 
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The Balance of Inequality (= Gini) index is
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4. Probability density function of X, fX(x)

sB

µX = ⌠
⌡0

∞
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5. Cumulative distribution function of X, FX(x)



fY(y;σ > 0) = 2 φ0,σ2(y) I [0, ∞)(y) = 
1

σ
 

2

π
 exp 




−

y2

2σ2




  I [0, ∞)(y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = erf  −1 
y

σ 2

  I [0, ∞)(y)

Q(x) = FY
−1(x) = σ 2 erf  −1(x) I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = π erf  −1(x) I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 

1− exp − erf  −1(x)2




 I [0, 1] (x)

+  I (1, ∞)(x)

The graphs show a distribution with σ = 2

In this example, µY = 1.596, µX = 0.7071, and BOI = 0.4142

Figure A3.10 − Half Normal distribution
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The mean of the distribution, µY = E(Y),
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
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⌡0

1

Q(x)xdx = 
1

2

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 2 − 1
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4. Probability density function of X, fX(x)
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sB =  FX (µX) = 1− exp 

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5. Cumulative distribution function of X, FX(x)



fY(y;a > 0,b > 0) = abya−1 1− ya

b−1

  I [0, 1] (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = 1− (1− ya)b  I [0, 1] (y) +  I (1, ∞)(y)

Q(x) = FY
−1(x) = [1− (1− x)1 b] 1 a I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = 

[1− (1− x)1 b] 1 a

b Β(1+ 1 a, b)   I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = ncf

The graphs show a distribution with a = 0.5 and b = 2

In this example, µY = 0.1667, µX = 0.8, and BOI = 0.6

Figure A3.11 − Kumaraswamy distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
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⌡0

1

Q(x)xdx = 1−
Β(1+ 1 a, 2b)
Β(1+ 1 a, b)

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 1−
2 Β(1+ 1 a, 2b)
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4. Probability density function of X, fX(x)
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∞
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5. Cumulative distribution function of X, FX(x)



fY(y;α > 1,λ > 0) = αλ y−1−α exp − λy−α
  I [0, ∞) (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = exp − λy−α
  I [0, ∞) (y)

Q(x) = FY
−1(x) = 



−

1

λ
 ln(x)




 −1 α

 I (0, 1) (x)

fX(x) = 
Q(x)

µY
 = 

[− ln(x)] −1 α

Γ (1− 1 α)   I (0, 1) (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 
Γ [1− 1 α , − ln(x)]

Γ (1− 1 α)   I (0, 1) (x)

+  I [1, ∞)(x)

The graphs show a distribution with α = 3 and λ = 2

In this example, µY = 1.706, µX = 0.63, and BOI = 0.2599

Figure A3.12 − Log−Gompertz distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
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⌡0

1

Q(x)xdx = 21 α −1

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 21 α − 1
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;µ > 0,σ > 0,z ≤ µ σ) = 
φµ,σ2 (y)
(1− 2t)   I [µ−zσ, µ+zσ] (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = 




1

2
 

1+ erf 

y − µ
σ 2





 − t




 (1 − 2t)−1

I [µ−zσ, µ+zσ] (y) +  I (µ+zσ, ∞)(y)

Q(x) = FY
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where t = Φµ,σ2 (µ − zσ) = 1− Φµ,σ2 (µ + zσ)
The graphs show a distribution with µ = 5, σ = 2, and z = 1.96

In this example, µY = 5, µX = 0.5997, and BOI = 0.1994

Figure A3.13 − Normal distribution symmetrically truncated
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)
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The graphs show a distribution with µ =5 and σ =2

In this example, µY = 5, µX = 0.5997, and BOI = 0.1994

Figure A3.14 − Normal distribution symmetrically truncated 95%
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;y0 > 0,α > 1) = 
α
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The graphs show a distribution with y0 = 2 and α = 2.5

In this example, µY = 3.333, µX = 0.625, and BOI = 0.25

Figure A3.15 − Pareto I distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;α > 1,β > 0) = 
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The graphs show a distribution with α = 3 and β = 2

In this example, µY = 1, µX = 0.8, and BOI = 0.6

Figure A3.16 − Pareto II distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;α > 0,β > 0) = 
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β
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The graphs show a distribution with α = 0.2 and β = 0.5

In this example, µY = 0.4167, µX = 0.7273, and BOI = 0.4545

Figure A3.17 − Generalized Pareto distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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µX = 1/2  1

The barycenter of the distribution, µX = E(X),
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;a > 0) = a ya−1  I [0, 1] (y)

FY(y) = ⌠
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y

fY(y)dy = ya I [0, 1] (y) +  I (1, ∞)(y)
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The graphs show a distribution with a = 0.5

In this example, µY = 0.3333, µX = 0.75, and BOI = 0.5

Figure A3.18 − Power function I distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1

Q(x)xdx = 
1+ a

1+ 2a

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 
1

1+ 2a
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4. Probability density function of X, fX(x)

µX = ⌠
⌡0

∞
[1− FX(x)]dx − ⌠

⌡−∞
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FX(x)dx

     = 1− ⌠
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sB
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5. Cumulative distribution function of X, FX(x)



fY(y;b > 0) = b (1− y)b−1  I [0, 1] (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = ya I [0, 1] (y) +  I (1, ∞)(y)

Q(x) = FY
−1(x) = 1− (1− x)1 b I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = (1+ b) 1+ (1− x)1 b  I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 

b (1− x)1 b − 1 (1− x) + x



 I [0, 1] (x)

+  I (1, ∞)(x)

The graphs show a distribution with b = 0.5

In this example, µY = 0.6667, µX = 0.625, and BOI = 0.25

Figure A3.19 − Power function II distribution
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1. Probability density function of Y, fY(y)

µY
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
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∞
fX(x)xdx = 

1
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 
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1+ 2b
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The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 
b
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;σ > 0) = 
y

σ2
 exp 




−

y2

2 σ2




  I [0, ∞) (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = 



1− exp 




−

y2

2σ2








  I [0, ∞)(y)

Q(x) = FY
−1(x) = 2 σ  − ln(1− x)

 1 2
  I [0, 1) (x)

fX(x) = 
Q(x)

µY
 = 

2

π
 − ln(1− x)

 1 2
  I [0, 1) (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 

erfi ln(1− x)1 2 ln(1− x)−1 2

−
2

π
 (1− x)



 − ln(1− x)

 1 2
  I [0, 1) (x) +  I [1, ∞)(x)

The graphs show a distribution with σ = 2

In this example, µY = 2.507, µX = 0.6464, and BOI = 0.2929

Figure A3.20 − Rayleigh distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
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1

Q(x)xdx = 1−
1

2 2

The Balance of Inequality (= Gini) index is
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;y0 > 0,α > 1,θ > 0) = 
αθ
y

 

y0

y



 α

 



1− 


y0

y



 α




 θ−1

 I (y0, ∞) (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = 



1− 


y0

y



 α




 θ

  I (y0, ∞) (y)

Q(x) = FY
−1(x) = y0 1− x1 θ


 −1 α

  I [0, 1) (x)

fX(x) = 
Q(x)

µY
 = θ Β(1− 1 α, θ)

 −1
 1− x1 θ


 −1 α

 I [0, 1) (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = ncf

The graphs show a distribution with y0 = 1, α = 2, and θ = 3

In this example, µY = 3.2, µX = 0.6926, and BOI = 0.3853

Figure A3.21 − Stoppa distribution
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The mean of the distribution, µY = E(Y),
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µY = ⌠
⌡−∞

∞
fY(y)ydy = y0θ Β(1− 1 α, θ)

0.0

0.2

0.4

0.6

0.0 2.5 5.0 7.5 10.0
y

D
en

si
ty

1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1

Q(x)xdx = 
Β(1− 1 α, 2θ)
Β(1− 1 α, θ)

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 
2 Β(1− 1 α, 2θ)

Β(1− 1 α, θ) − 1
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;0 < α < 1) = 2α (1− y) (2y − y2) α−1 I [0, 1] (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = (2y − y2) α I [0, 1] (y) +  I (1, ∞)(y)

Q(x) = FY
−1(x) = 1− (1− x1 α)1 2 I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = 




1−

Β(1 2, 1+ α)
2






 −1

 1− (1− x1 α)1 2 I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = ncf

The graphs show a distribution with α = 0.5

In this example, µY = 0.2146, µX = 0.7766, and BOI = 0.5533

Figure A3.22 − Topp−Leone distribution
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The mean of the distribution, µY = E(Y),
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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
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Β(1 2, 1+ 2α) − 2

Β(1 2, 1+ α) − 2




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 1 α

}  1 2

xM = FY(µY) = 
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3. Quantile function of Y, FY
−1(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and FY

−1(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1

FY
−1(x)xdx = 

1

2
 




Β(1 2, 1+ 2α) − 2

Β(1 2, 1+ α) − 2






The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 
Β(1 2, 1+ 2α) − 2

Β(1 2, 1+ α) − 2
− 1
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;a > 0) = 
2

a
 1−

y

a

  I [0, a] (y)

FY(y) = ⌠
⌡−∞

y

fY(y)dy = 


2

a
 y −  

1

a2
 y2


  I [0, a] (y) +  I (a, ∞)(y)

Q(x) = FY
−1(x) = a 1− 1− x

  I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = 3 1− 1− x

  I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 3x −  2 



1− 

1− x

3 2


  I [0, 1] (x)

 +  I (1, ∞) (x)

The graphs show a distribution with a = 9

In this example, µY = 3, µX = 0.7, and BOI = 0.4

Figure A3.23 − Triangular distribution
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1. Probability density function of Y, fY(y)
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
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Q(x)xdx = 
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4. Probability density function of X, fX(x)

µX = ⌠
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∞
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5. Cumulative distribution function of X, FX(x)



Q(x;λ > 0) = 




1

λ
+

xλ − (1− x)λ

λ



  I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = 1− (1− x)λ + xλ  I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx

 = 
(1− x)λ + 1+ λ − (1− x)λ + xλ x − 1

1+ λ
 I [0, 1] (x)

 +  I (1, ∞)(x)

The graphs show a distribution with λ = 7

In this example, µY = 0.1429, µX = 0.5972, and BOI = 0.1944

Figure A3.24 − Tukey Lambda I distribution
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1. Quantile function, Q(x)

µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)
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∞
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2. Probability density function of X, fX(x)
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3. Cumulative distribution function of X, FX(x)



Q(x;λ2 > 0,λ3 > 0,λ1 ≥ λ2
−1) = 




λ1 +

xλ3 − (1− x)λ3

λ2




  I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = 




1+

xλ3 − (1− x)λ3

λ1λ2




  I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx

 = 
(1− x)λ3 + λ1λ2 (1+ λ3) − (1− x)λ3 + xλ3 x − 1

λ1λ2 (1+ λ3)
 I [0, 1] (x)

 +  I (1, ∞)(x)

The graphs show a distribution with λ1 = 0.5, λ2 = 2, and λ3 = 6

In this example, µY = 0.5, µX = 0.6071, and BOI = 0.2143

Figure A3.25 − Tukey Lambda III distribution
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µX

µX = 1/2  1

The barycenter of the distribution, µX = E(X),
is the center of mass of fX(x) and Q(x)

µX = ⌠
⌡−∞

∞
fX(x)xdx = 

1

µY
 ⌠
⌡0

1

Q(x)xdx = 
1

2
+

λ3

λ1λ2 (2+ 3 λ3 + λ3
2)

The Balance of Inequality (= Gini) index is

BOI  = 2 µX − 1 = 
2 λ3

λ1λ2 (2+ 3 λ3 + λ3
2)

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
x

D
en

si
ty

2. Probability density function of X, fX(x)
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3. Cumulative distribution function of X, FX(x)



Q(x;λ > 0,λ1 > 0,λ2 > 0) = λ 1+ xλ1 − (1− x)λ2  I [0, 1] (x)

fX(x) = 
Q(x)

µY
 = 

(1+ λ1) (1+ λ2)
1+ (2+ λ1) λ2

 1+ xλ1 − (1− x)λ2  I [0, 1] (x)

FX(x) = ⌠
⌡−∞

x

fX(x)dx = 
1

1+ (2+ λ1) λ2
 

(1+ λ2) x1+λ1 + (1+ λ1)

 (1− x)1+λ2 + (1+ λ2) x − 1



 I [0, 1] (x) +  I (1, ∞)(x)

The graphs show a distribution with λ = 0.5, λ1 = 6, and λ2 = 9

In this example, µY = 0.5214, µX = 0.5906, and BOI = 0.1812

Figure A3.26 − Generalized Tukey Lambda distribution
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1. Quantile function, Q(x)
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2. Probability density function of X, fX(x)
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3. Cumulative distribution function of X, FX(x)



fY(y;0 ≤ a < b < ∞) = 



1

b − a
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  I [a, b] (y)
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y

fY(y)dy = 
y − a

b − a

  I [a, b] (y) +  I (b, ∞)(y)

Q(x) = FY
−1(x) = a + (b − a) x  I [0, 1] (x)

fX(x) = 
Q(x)

µY
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2

a + b
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 x2
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+  I (1, ∞)(x)

The graphs show a distribution with a = 1 and b = 9

In this example, µY = 5, µX = 0.6333, and BOI = 0.2667

Figure A3.27 − Uniform distribution
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



fY(y;0 ≤ a < b < ∞) = 
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(b − a)3
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The graphs show a distribution with a = 1 and b = 9

In this example, µY = 5, µX = 0.6714, and BOI = 0.3429

Figure A3.28 − U−Quadratic distribution
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2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)
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The graphs show a distribution with α = 2 and β = 3

In this example, µY = 2.659, µX = 0.6464, and BOI = 0.2929

Figure A3.29 − Weibull distribution
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1. Probability density function of Y, fY(y)

µY

µY = ⌠
⌡0

∞
[1− FY(y)]dy − ⌠

⌡−∞

0

FY(y)dy

xM

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
y

x

2. Cumulative distribution function of Y, FY(y)
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3. Quantile function, Q(x)
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4. Probability density function of X, fX(x)
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5. Cumulative distribution function of X, FX(x)



APPENDIX 4 EMPIRICAL APPLICATION: INCOME INEQUALITY IN LIS COUNTRIES 
 

Table A4.1 – Empirical application: Income inequality in LIS countries 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Country Year Number of observations Population size  Rounded personal weights Barycenter Balance of 

Inequality (= 
Gini) index 

Total Negative values 
(Not available) 

Before rounding 
personal weights 

After rounding 
personal weights 

Change Minimum 
value 

Maximum 
value 

India 2011 204,365 - (-) 1,211,296,909 1,211,299,163 2,254 154 156,648 0.9451 0.8903 
Egypt 2012 49,174 - (13) 80,044,895 80,046,346 1,451 93 18,950 0.9370 0.8741 
South Africa 2015 37,975 - (-) 54,948,875 54,948,709 -166 7 64,709 0.9345 0.8690 
Palestine 2017 20,175 - (-) 4,733,357 4,733,357 - 13 1,249 0.9294 0.8589 
Guatemala 2014 54,802 - (24) 15,993,629 15,993,691 62 13 2,398 0.9089 0.8178 
Viet Nam 2013 23,583 - (-) 91,895,642 91,895,642 - 321 27,736 0.9058 0.8112 
Paraguay 2016 37,713 - (-) 6,754,408 6,754,408 - 10 1,177 0.8874 0.7748 
Mexico 2016 257,658 1,950 (-) 122,643,890 122,643,890 - 7 5,386 0.8859 0.7718 
Peru 2016 130,526 979 (98) 31,893,611 31,892,968 -643 2 1,463 0.8830 0.7661 
Israel 2016 29,739 14 (-) 8,201,662 8,201,795 133 9 1,603 0.8766 0.7532 
Germany 1974 135,088 - (1,223)  62,101,366 62,096,565 -4,801 117 4,791 0.8765 0.7529 
Panama 2016 42,168 - (48) 4,026,826 4,026,826 - 3 1,029 0.8757 0.7514 
Georgia 2016 9,267 - (85) 3,643,149 3,643,197 48 96 1,651 0.8657 0.7314 
United States of America 1974 34,244 - (932) 210,124,530 210,124,530 - 100 27,781 0.8602 0.7205 
Brazil 2016 447,122 - (-) 204,412,569 204,412,458 -111 4 11,125 0.8531 0.7061 
China 2013 61,162 1 (260) 1,355,286,257 1,355,284,887 -1,370 4,562 339,169 0.8476 0.6952 
Italy 1986 25,068 - (234) 62,715,920 62,716,555 635 310 39,962 0.8429 0.6858 
Taiwan 2016 50,569 - (-) 25,962,025 25,962,371 346 121 815 0.8407 0.6814 
Japan 2013 7,276 - (-) 127,103,390 127,103,354 -36 3,265 579,565 0.8391 0.6781 
United Kingdom 1974 18,974 - (5,160) 56,224,001 56,219,962 -4,039 2,963 2,963 0.8376 0.6753 
United States of America 2016 185,412 159 (-) 319,310,408 319,310,186 -222 84 11,310 0.8301 0.6602 
Ireland 2016 12,612 - (-) 4,802,277 4,802,240 -37 24 6,353 0.8255 0.6511 
Uruguay 2016 118,568 - (745) 3,478,072 3,478,072 - 9 46 0.8197 0.6393 
Australia 2010 42,595 157 (64) 21,472,970 21,472,860 -110 2 2,875 0.8135 0.6271 
Serbia 2016 17,893 - (14) 6,755,343 6,755,137 -206 190 2,635 0.8056 0.6113 
United Kingdom 2016 44,145 15 (-) 64,421,005 64,421,005 - 221 39,675 0.8055 0.6110 
Italy 2016 16,464 2 (-) 60,243,342 60,243,440 98 492 20,161 0.8038 0.6077 
Spain 2016 34,911 77 (-) 46,038,417 46,038,316 -101 34 18,528 0.8037 0.6074 
Greece 2016 54,041 44 (234) 10,634,925 10,634,731 -194 8 3,910 0.8027 0.6053 
Canada 2016 62,149 164 (-) 35,158,296 35,158,332 36 10 7,801 0.8003 0.6006 



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Country Year Number of observations Population size  Rounded personal weights Barycenter Balance of 

Inequality (= 
Gini) index 

Total Negative values 
(Not available) 

Before rounding 
personal weights 

After rounding 
personal weights 

Change Minimum 
value 

Maximum 
value 

Sweden 1975 29,277 - (299) 8,207,622 8,208,797 1,175 30 2,642 0.7937 0.5874 
Lithuania 2016 11,136 - (9) 2,847,904 2,847,934 30 4 3,471 0.7936 0.5872 
Poland 2016 99,230 - (-) 38,003,531 38,002,971 -560 0 1,299 0.7922 0.5844 
Netherlands 2016 29,716 79 (-) 16,836,205 16,836,008 -197 0 10,695 0.7889 0.5776 
France 2010 41,221 47 (-) 63,715,341 63,715,308 -33 1 8,893 0.7874 0.5747 
Luxembourg 2013 9,982 16 (6) 507,498 507,610 112 3 335 0.7866 0.5731 
Germany 2016 45,731 - (-) 82,205,143 82,205,141 -2 0 30,742 0.7829 0.5659 
Estonia 2016 15,320 13 (-) 1,301,903 1,301,915 12 4 1,190 0.7804 0.5608 
Russia 2016 367,080 - (-) 144,690,376 144,690,111 -265 2 58,058 0.7803 0.5606 
Belgium 2016 14,028 6 (-) 11,162,308 11,162,300 -8 69 4,872 0.7791 0.5582 
Austria 2016 12,876 - (-) 8,640,974 8,640,955 -19 115 4,761 0.7771 0.5542 
Norway 2016 522,940 13,304 (-) 5,196,919 5,196,919 - 1 10 0.7742 0.5484 
Iceland 2010 8,855 - (-) 300,766 300,562 -204 9 115 0.7731 0.5462 
Switzerland 2016 18,700 - (-) 8,280,847 8,280,892 45 21 4,133 0.7714 0.5427 
Denmark 2016 187,596 350 (-) 5,733,361 5,815,476 82,115 31 31 0.7618 0.5236 
Slovenia 2015 11,228 - (-) 2,025,509 2,025,601 92 63 722 0.7569 0.5139 
Finland 2016 24,818 1 (-) 5,418,579 5,418,731 152 1 1,681 0.7562 0.5125 
Sweden 2005 36,918 56 (-) 8,882,224 8,881,614 -610 2 520 0.7476 0.4951 
Slovakia 2016 16,031 8 (67) 5,255,973 5,255,926 -47 13 1,691 0.7455 0.4911 
Hungary 2015 6,237 - (-) 9,897,541 9,897,739 198 68 14,069 0.7413 0.4826 

Notes. This table shows an empirical application of the methodology for the estimation of the distributions’ barycenter and Balance of Inequality (=Gini) index by using weighted observations 
introduced in Section 7. For each country listed in Col. (1), Col. (10) shows the estimation of the population’s barycenter of the total individual income distribution, and Col. (11) shows the 
corresponding Balance of Inequality (=Gini) index with reference to the year shown in Col. (2). Col. (3) and (4) respectively show the total number of observations for each country and the 
number of negative (and missing) values. Personal weights are rounded to the nearest integer. Col. (5) and (6) show the estimated population size before and after rounding, respectively, and 
Col. (7) shows the change in the estimated population size. Col. (8) and (9) show the minimum and maximum personal weight after rounding. The estimates are made by using the total personal 
income variable (pitotal) in the Luxembourg Income Study (LIS) Database provided by the LIS Cross-National Data Center. 
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